@article{AIHPA_1987__46_2_155_0, author = {Breen, Stephen}, title = {Feynman diagrams and large order estimates for the exponential anharmonic oscillator}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {155--173}, publisher = {Gauthier-Villars}, volume = {46}, number = {2}, year = {1987}, mrnumber = {887145}, zbl = {0623.28010}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1987__46_2_155_0/} }
TY - JOUR AU - Breen, Stephen TI - Feynman diagrams and large order estimates for the exponential anharmonic oscillator JO - Annales de l'I.H.P. Physique théorique PY - 1987 SP - 155 EP - 173 VL - 46 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1987__46_2_155_0/ LA - en ID - AIHPA_1987__46_2_155_0 ER -
%0 Journal Article %A Breen, Stephen %T Feynman diagrams and large order estimates for the exponential anharmonic oscillator %J Annales de l'I.H.P. Physique théorique %D 1987 %P 155-173 %V 46 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1987__46_2_155_0/ %G en %F AIHPA_1987__46_2_155_0
Breen, Stephen. Feynman diagrams and large order estimates for the exponential anharmonic oscillator. Annales de l'I.H.P. Physique théorique, Tome 46 (1987) no. 2, pp. 155-173. http://www.numdam.org/item/AIHPA_1987__46_2_155_0/
[1] Borel summability beyond the factorial growth. Ann. Inst. H. Poincaré, Sect. A., t. 41, 1984, p. 37. | Numdam | MR | Zbl
and ,[2] Generalized logarithmic Borel summability. J. Math. Phys., t. 25, 1984, p. 3439-3443. | MR | Zbl
and ,[3] The exponential anharmonic oscillator and the Stieltjes continued fraction, preprint. | MR
, , and ,[4] Exponential perturbations of the harmonic oscillator. J. Math. Phys., t. 22, 1981, p. 1952-1958. | MR | Zbl
,[5] An improvement of Watson's theorem on Borel summability. J. Math. Phys., t. 21, 1980, p. 261-263. | MR | Zbl
,[6] Methods of modern mathematical physics. Vol. IV, New York, Academic Press, 1975. | Zbl
and ,[7] The Lipatov argument. Commun. Math. Phys., t. 74, 1980, p. 273-280. | MR
,[8] Leading large order asymptotics for (φ4)2 perturbation theory. Commun. Math. Phys., t. 92, 1983, p. 179-194. | MR | Zbl
,[9] Large order perturbation theory for the anharmonic oscillator. Mem. Amer. Math. Soc., to appear.
,[10] The Lipatov argument for φ43 perturbation theory. Commun. Math. Phys., t. 102, 1985, p. 59-88. | MR
and ,[11] Modified perturbation theories for an anharmonic oscillator. Phys. Lett., B., t. 79, 1978, p. 403-405.
and ,[12] Functional integration and quantum physics, New York. Academic Press, 1979. | MR | Zbl
,[13] The P (φ)2 Euclidean (quantum) field theory. Princeton, Princeton University Press, 1974. | MR
,[14] Boundary conditions in the P(φ)2 Euclidean field theory. Ann. Inst. H. Poincaré, Sect. A, t. 25, 1976, p. 231-334. | Numdam | MR
, , and ,[15] Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Q. Chem., t. 21, 1982, p. 3-25.
,