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Central decomposition of Poincaré-invariant nets
of local field algebras and absence

of spontaneous breaking of the Lorentz group
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ABSTRACT. 2014 We study reducible, Poincare-invariant representations
. of nets of local field algebras and prove a number of structure results,
some of which are generalizations of previous work on nets of observable
algebras [1] ] and some of which are quite new. Using these we examine
the central decomposition of such nets, study the spontaneous breaking
of the Lorentz group symmetry under such decompositions into pure
phases, and consider the significance of the modular automorphism groups
of the wedge algebras.

RESUME . - On etudie des representations réductibles et Poincare-
invariantes de reseaux d’algebres de champs locales et on demontre des
resultats de structure, dont quelques-uns sont des generalisations d’un
travail anterieur [1] sur les reseaux d’algebres d’observables et quelques-uns
sont tout a fait nouveaux. En les employant, on examine la decomposition
centrale de tels reseaux, on etudie la brisure spontanee du groupe de
Lorentz dans cette decomposition en phases pures, et on considere la
signification des groupes d’automorphismes modulaires des algebres
associees aux regions de l’espace-temps en forme de coin.
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148 W. DRIESSLER AND S. J. SUMMERS

I INTRODUCTION

In this paper we reexamine in the light of more recent results the old
problem [1] of the decomposition of a net of local algebras (of observables
or « fields » [2 ]), in a Hilbert space Jf with the subspace P0H of transla-
tion-invariant vectors having dimension dim &#x3E; 1, into a direct

integral of irreducible nets of local algebras in pure phases, i. e. in Hil-
bert spaces ~f(0 with dim = 1. (That such a situation can arise
in concrete models is now well known see e. g. [3] ] [4] ] [5] ] and references
given therein.) Postponing any detailed definitions, we may sketch our
intentions as follows. If { is a Poincare-invariant net of local field

algebras (which may contain the of observable algebras in
the usual manner [2 ]) in a Hilbert space Jf with dim (P0H) &#x3E; 1, then
the von Neumann algebra ff generated is reducible. Consi-

dering the special case where {~(~)} coincides with {j~(~)}, Araki
showed [1] ] that the central decomposition of ~ :

where S is the spectrum of the center of ~, yields a direct integral of irre-
ducible « representations » of ~, in each of which the translation subgroup
of the Poincare group is implemented by a strongly continuous unitary
group satisfying the spectrum condition. However, he presented an example
of such a system for which in each Hilbert space ~f(0 the Lorentz group
is not unitarily implement able, i. e. the Lorentz group symmetry is spon-
taneously broken in the pure phases of the theory.

First of all, we verify that the above-mentioned results hold in the more
general case of a net of field algebras satisfying Bose and Fermi statistics.
And we clarify a number of technical points that were passed over in [1] ]
but that do require attention. Furthermore, we present in the Appendix
a new class of systems for which the Lorentz group symmetry is spon-
taneously broken in the pure phases. Other results in [7] ] are improved
and/or extended as well.

Further results that go beyond the matters dealt with in [1] ] have been
motivated by the following new observation : the center of ~ is equal
to the center of each wedge algebra ~(W), where W is a Poincare transform
of WR = ~ x E f~4 ~ ~ x° ~  xl ~. With this fact in hand, we can show that
a certain property that can be formulated entirely in the framework of
the algebraic relativistic quantum theory entails that the Lorentz symmetry
cannot be spontaneously broken under the decomposition (1.1). This
property, which is explained in detail in Section 5, requires that the modular

l’Institut Henri Poincaré - Physique theorique



149CENTRAL DECOMPOSITION OF POINCARE-INVARIANT NETS

automorphism groups of the wedge algebras .~(W) must be equal to the
automorphism groups induced by the action of the appropriate Lorentz
velocity transformations in the given representation of the Poincare

group. From this property one can also conclude that the wedge algebras
satisfy (twisted) duality. Also of interest is another consequence of the

equality of the center of ~ with the center of .~(W), W any wedge region :
all of the modular automorphism groups of the wedge algebras are inner
automorphisms of the algebra ff. Thus, if the coincidence of these modular
automorphism groups with the Lorentz velocity transformations does not
hold, then there are many additional symmetries of the theory to be under-
stood. If it does hold, however, we show that it is conserved in the decompo-
sition ( 1.1 ), i. e. holds in each pure phase.

Before launching into the details of this work, we would like to embed
it into a somewhat broader context that is admittedly somewhat speculative.
The condition above is prima facie weaker than the so-called special condi-
tion of duality, discovered by Bisognano and Wichmann [6] ] [7] and found
very useful in various applications [8 ] [9] ] [10 ], which holds whenever
there is a quantum field in Jf with a cyclic, Poincare-invariant vector,
which transforms under the same representation of the Poincare group
as { ~(~)}, and which is associated to ~ ~ (C~) ~ in the sense that the ele-
ments of commute weakly on a suitable dense domain with all
field operators with test function f having support contained in WR
(see [6 ] [7] and Section 6 for further details). On the other hand, by results
of [77] and what is shown below, one can conclude that if there is such a
field in J~ (which need not necessarily commute weakly with the net in
the above sense), the Lorentz group symmetry cannot be spontaneously
broken under the decomposition (1.1). (This will be explained in Section 6.)
It is not impossible that the above mentioned condition on the modular
automorphism groups of the wedge algebras (with the concomitant combi-
nation of analyticity properteis and the geometry of the Lorentz group)
could be the touchstone in the algebraic relativistic quantum theory for
the implicit presence of a quantum field associated to the net the condi-
tion is necessary and implies results (duality of wedge algebras, no spon-
taneous br,eaking of Lorentz group) that do not always hold in the general
algebraic setting. This possibility should be investigated further.

II DEFINITIONS AND NOTATION

To begin we must establish notation and formulate some definitions.
Although we shall state all definitions and results for four space-time dimen-
sions, they also hold mutatis mutandis in two and three space-time dimen-
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150 W. DRIESSLER AND S. J. SUMMERS

sions. Let WR denote the right wedge defined by WR = { x E ~41 I I  
where x° is the time coordinate. Then the set of all wedges is

where is the image of WR under the Poincare transformation ~, E ~.
Let Jf, the set of all double cones, be the set of the interiors of all intersec-
tions of a forward light cone with a backward light cone.
J~ will denote an infinite-dimensional separable complex Hilbert space,

the algebra of all bounded operators on Jf, U(P~+) a strongly conti-
. nuous, unitary representation of (the universal covering group of) the
Poincare group ~+ that satisfies the spectrum condition requiring positivity
of the energy [7] ] [2 ], and Po the projection in ~f onto the subspace of all
vectors invariant where T(a) = U(l, a) is the Abelian

subgroup of U(P~+) implementing the translations. P0H can, of course,
be multidimensional.
Given this structure, a Poincare-invariant net of local field algebras

{F(O)} is a map O ~ F(O) from the open subsets of R4 to the von Neu-
mann algebras on ~f that satisfies the following properties.

(1) Isotony : (91 1 c (92 implies ~ ((~ 1) c ~((92).
(2) Locally generated : for any open (~ c ~4, ~(~) is the smallest von

Neumann algebra containing { ~(~o) ~ =~o }, where ~ denotes
the closure of ~ in ~4.

(3) Poincare invariance : the group U(ø&#x3E;) implements the natural
action on the net {F(O)}: for any 03BB ~ P~+ and any O c R4,

where (!);. is the image under ~,.

(4) Locality : there exists a unitary involution Z such that [Z, U(/L)] = 0

for an 03BB ~ P~+ and such that, setting F:t = - 1 ( F ± ZFZ*), one has :

where primes on space-time regions signify the interior of their causal
complements and primes on algebras their commutants. If

then one verifies that locality means precisely ~~ (C~1) c .~ (U2)Z’, for any
(!)1 S; (92, (92 c ~4 (note that ~~ ((~)z,- .~ ((~),z).

Annales de l’Institut Henri Poincare - Physique " theorique "



151CENTRAL DECOMPOSITION OF POINCARE-INVARIANT NETS

Remark. The physical significance of the existence of such a Z is that
we are admitting both Bose and Fermi statistics [2 ].

(5) There is an Q E P0H that is cyclic for ff == (Uff((9))" in H and

ZQ = Q (see Remark 4 after Prop. 3.1). Note that we do not require that Q
be cyclic for .~( (9), (9 E Jf.
The quintuple {H, U(P~+), Q, { F(O) }, Z} will be called a Poincare-

invariant field system, and when Jf, U(P~+), Q and Z are understood,
[ .~( (9) } will be referred to as a Poincare-invariant net of local field alge-
bras. If only the translation subgroup of .9  is unitarily implemented,
« Poincare-invariant » is replaced by « translation-invariant ». If ff is

irreducible in ~f, the word « irreducible » will be prefixed to the relevant
name. Further structure, that we do not use here, is commonly added (see
e. g. [2 ]).

III. STRUCTURE RESULTS

We next prove some preliminary propositions giving structure results
for Poincare-invariant field systems. Portions of the first proposition are
only generalizations to the field algebra case of results known for obser-
vable algebras (see Remarks below). In the following, for any von Neu-
mann algebra ~(~~) is the center of ~, and an overbar
on a set of vectors signifies the strong closure of the set in ~f. Moreover,
if and % are von Neumann algebras % will denote the smallest

von Neumann algebra containing both.

PROPOSITION 3.1.2014If {H,U(P~+), 03A9, {F(O)}, Z} is a Poincare-

invariant field system, then

Proof For observable algebras the counterpart to (1) was proven in
Prop. 2 of [1] ] using only the spectrum property. The argument thus carries
over to the present situation without change.

Let F ~ F(O), O ~, H, and with |an| I ~ oo as n ~ oo.
Since ~f is separable = is uniformly
bounded in norm, there exists a subsequence {F(ank)}k~N that is weakly
convergent. By locality, the weak limit

Vol. 43, n"2-1985.



152 W. DRIESSLER AND S. J. SUMMERS

Since it follows that By locality,
for any there exists an N(i) such that for all k &#x3E;_ N(i),

Thus, firs t taking k ~ ~ and then i ~ ~, one obtains (F~,-)2 = - (F~,-)2.
If F is symmetric or antisymmetric, the same is true of Therefore,
decomposing F into its symmetric and antisymmetric parts and performing
the above argument on each part separately, one may conclude that F 00,- = 0,
for any F E ~~ (C~), C~ E Jf. So F~ = which with (3.1) implies Foo e~(~),
since ~ is weakly closed.
Note for later use that Foo in (3 .1) is independent of the choice of sequence

{ (0, an ) ~ n E~ with I -~ oo such that { is weakly Cauchy. This
follows because F~03A9 = w - lim F(an)03A9 = PoFQ [72] ] is independent of

n-’ o0

the choice of { as specified and Q is separating for ~(.~ ) c ~’. Define

now ’~oo == {Foo I FEU,~((9) }. .
. 

~ J
Let 01 1 E Since Z03A91 E for any

Thus,

since F~ = F 00. But Q is cyclic for U .~( (9), proving (2).
Now let I&#x3E; E P0H and choose an increasing sequence {On}n~N ~ H

= ~4, and for each n E N choose an Fn E ~(~) so that the strong
limit s - lim Fn03A9 = I&#x3E; (this is possible since u F(On)03A9 is dense in By

n -~ 00

the obvious diagonalization procedure find a sequence

converges weakly for each n E N and let be the weak limit.

Since 03A6 ~ P0H, it follows easily that C, so that F~03A9 ~ PoJf.
On the other hand, (1) implies that Therefore,

= ~(.~ )SZ = proving (3). (1) also implies that ~’Q c 
which with the above yields ~Q = Thus, Po E ~, so that

It has already been seen that Q is cyclic for P0F~P0 in P0H, so P0F"~P0
is maximally Abelian and must ButPo~(~)Po =~(Po~Po)
[13, Corollaire, p. 18 ]. Thus,

Annales de l’Institut Henri Physique theorique



153CENTRAL DECOMPOSITION OF POINCARE-INVARIANT NETS

so that

In implying ~(~)=~, since Q is separating
for both algebras. This proves (4). Similarly, ~ ~ _ ~(~ ), and since Z E!7~,
assertion (5) also follows.

(6) will be proven next. Q is cyclic for tj ~(~). But for each ø e Jf

and any W E W there exists an open subset %((!), W) c R4 such that
c W, Va E N(O, W). But for any 03A6 E Jf, using the spectrum condition,

(Reeh-Schlieder principle). It follows easily that 
for any W E ~. 

Finally, note that for any FEU.~((9) and any a sequence

{ an = {(0, an) with I ~ oo can be chosen such that 
for all n e N. By the aforementioned independence of Foo of such a choice,
this implies that .~ 00 £ ~(.~(W)). Thus.~(~) ~~(.~(W)), for any W E ~.
To see the containment J~(~(W) ~~(~)), let A = A*e~(~(W)) and
{W(T)}~[R~{~~!!~}T6[R be the strongly continuous, unitary group of
translations along the lightlike direction given by the intersection of the
closure of the given wedge W with the closed forward light cone. Then
as in part (1) of the proof of Theorem 2 . 2 in [14 ], which uses only the
lightlike monotonicity of the wedge regions, one can easily show that
( AQ, AQ, W( - Vr Since by the spectrum condi-
tion Pjj &#x3E;- 0 in Jf, one can analytically continue these scalar products and
obtain a bounded entire function. Thus,  AQ, is constant in 7:.

Using arguments in [12 ], one sees that w2014limW(T)=Po, so that

= implying A03A9 ~ P0H. Since by (6) Q is separating
for .~(W), it follows that so that A = A~e~(~). (7) follows
at once. D

Remarks. (1). Note that the only role played by the unitary imple-
mentability of the (homogeneous) Lorentz group in this proof is to assure
that the spectrum of the generators of the translations is absolutely
continuous in (I - so that w-limT((0, an)) = Po [12 ].

-

(2). 2014 We sketch an alternative proof for the new observation (7) below
(see Remark following proof of Theorem 4.1).

(3). 2014 Assertion (1) was shown for observable algebras in [1 ]. (3) and (4)
can be concluded for observable algebras using [7] ] and [15, Corollary,
p. 179 ] .

(4). 2014 As seen above, without assuming ZQ = Q, we have  Q, = 0,

Vol. 43, n° 2-1985.



154 W. DRIESSLER AND S. J. SUMMERS

VF E F. Thus,  S2, F03A9~ = Z03A9, FZ03A9 ), VF E F, and ZQ = Q can always
be attained by multiplying Z by a unitary in ~(.~ ). This observation is
related to a result in [16 ].
The following lemma, which is also properly a structure result and

which will be used in the proof of Proposition 3. 3, will be proven in the
next section (after the proof of Theorem 4.1).

LEMMA 3 . 2. - If { ~f, U(~), a, {.~((9)}, Z } is a Poincare-invariant
field system, then .~(W) is a type III von Neumann algebra, for all W E ~’.

PROPOSITION 3.3. 2014 If {H,U(P~+), 03A9, {F(O)}, Z} is a Poincare-
invariant field system, then F is homogeneous of type 100. Thus, there
exists an Abelian von Neumann algebra ~, *-isomorphic to~(~), and a
separable Hilbert space ~1 such is unitarily equivalent to ~ .

Proof. - Suppose Q E~(.~ ) is a finite central projection in ~. Then
Q~ Q is finite, so that its subalgebra Q~ (W)Q must also be finite. But by
Prop. 3.1 (7), Q is also in ~(~ (W)). Lemma 3 . 2 entails, however, that ~ (W)
is purely infinite. Thus, Q = o. Since, in addition, .~’ is Abelian (Prop. 3.1 (4)),
.~ is type 100 using [13, Section III . 3 .1 ] and the separability of ~. The rest
of the proposition follows from [13, Section 111.3.1]. D

IV CENTRAL DECOMPOSITION

With this information we can proceed to the central decomposition
into irreducible representations of a general Poincare-invariant net of
local field algebras, which corresponds to the decomposition into pure
phases of the given physical system. The following theorem is a genera-
lization to field algebras of the main result of [1 ], shown for observable
algebras.

THEOREM 4.1. Let A = {H, U(P~+), Q, {F{O)}, Z } be a Poincare-
invariant field system. The central decomposition of F leads to a unique
integral decomposition of A into irreducible, translation-invariant field
systems. Precisely, there exists a measure v on the spectrum S of~(~)
and measurable families of Hilbert spaces ( ~ ~(0, von Neumann
algebras ( -~ ~(~) c ~(~f(~)), and strongly continuous, unitary repre-
sentations of the translations ( ~ (~), such that

For v-almost all 03B6, T(R4)(03B6) satisfies the spectrum condition, F(03B6) is irre-

Annales de l’lnstitut Henri Poincare - 
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155CENTRAL DECOMPOSITION OF POINCARE-INVARIANT NETS

ducible in ~f(0, Po(0~(0 = (Po~)(0 is one-dimensional (unique
vacuum in H(03B6)), and { H(03B6), T(R4)(03B6), 03A9(03B6), {F(O)(03B6) }, Z(0 } is an irredu-

0

cible, translation-invariant field system, where Q = and

® o
Z = Z(Q~(0. Moreover, if Fe~(~) and F = F(0~(0, then

F(03B6) ~ F(O)(03B6) 03BD-almost everywhere.

Proof 2014 For details concerning the decomposition of H and F with
respect to the center of ~ see [13 ]. By Prop. 3 .1 (1), T(a) decomposes,

re

b’a E ~4, and since for any T = ~(0~(0 e~f

the strong continuity of T(a)(~) for v-almost all , easily follows. If

is the spectral decomposition of the translation group T(t~), for any Borel
set d ~ ~4, E(d) e ~ also decomposes, and one has, by the uniqueness
of the spectral decomposition of T(~4)(,),

The spectrum condition, E(A) = 0 for any Borel set A with empty intersec-
tion with the forward light cone, yields at once E(A)(’) = 0 for any such A
and therewith the spectrum condition for T(~)(0, v-almost everywhere.
That all of these claims are true, and in particular that (4.1) holds for all

S with v(SBN I) = 0 and N1 independent of a, has been shown
carefully in [17 ].
Although it is clear from [73] that all F E. decompose, it is necessary

that one finds a set N ~ S with v(SBN) = 0, for which one can construct
a translation-invariant field system A(03B6) for every 03B6 ~ N. This, however,
involves prima facie uncountably many conditions, which could lead to
a zero-set catastrophe. For that reason it is necessary to take some pains
with the construction.
Let be the set of all double cones with apexes at rational points in ~4

(with respect to some given axis system). For each (!) pick a countable,
weakly dense set in .~( (!)) (this is possible since ~f is separable) and take
the union over E of such sets. Let R be the set consisting of the

operators in this union conjugated with all T(ai), ai E ~4 rational, and with Z.

Vol. 43, n° 2-1985.



156 W. DRIESSLER AND S. J. SUMMERS

Then ~ is countable. Thus it is possible to pick a set N2 ~ S with v(SBN2) = 0
0

such that for all , E N2 and all ~ ~ F = F(0~~(0, one has 

By construction and [13 ], for every F E ~, every rational ai E ~4 and every
~N3 ~ N1 of course,
~(SBN3)=0.
By Prop. 3 .1 (5), Z also decomposes into a direct integral of unitarities :

Z = . Z(03B6)dv(03B6). In view of the fact that for 03A6(03B6)dv(03B6),

03A8 = ~ 03A8(03B6)dv(03B6) ~ H, and any F ~ F,

one can find an N4 ~ N3 with = 0 such that the locality of {F(O)}
determined by Z carries over into each ~f(0. ~N4, to give the locality
of ~(0 determined by Z(~).

Define, for (E N4 and O E F(O)(03B6) to be the von Neumann algebra
generated by all F(() such that F E ~(~) n ~. By construction,

for all rational ai E f~4, (~ E Define further for any (~ c ~4,

It is clear that { { ~(~)(0 }, Z(Q } defines a local net. And using the condi-
tion of local generation assumed for F and the arguments of [13, Theo-
reme II. 3 .1 ], the last claim of the theorem follows easily.

It was seen in the proof of Prop. 3.1 that Po~Po is Abelian. Thus,
= is Abelian for v-almost Since~’ = ~(~ ),

Corollaire 11.3.1~) and Prop. 2 .1 (2) of [7~] ] entail ~(0=~(~(0)
(v-almost everywhere), implying that must be irreducible
on Po(0~(0. Thus, is one-dimensional. Indeed, one has from
Prop. 3 .1 (3) that CQ(0=Po(0~(0. since ~F)(0=CI(Q, v-almost
everywhere. Therefore, is the unique translation-invariant state in

~f(~). Since the isotony and the translation covariance of each net { ~(~)(0 }
is obvious, the theorem is proved, up to uniqueness. The strong continuity
of T(f~) and the condition of local generation on .~ yield the uniqueness
of this decomposition in the sense of [18, Theorem 8 . 23 ]. D

Remarks. (1). 2014 We note that Prop. 3.1 (7) was not used in the proof
of Theorem 4.1. The containment ~(~(W)) c ~(~ ) is, in fact, a conse-
quence of Theorem 4.1. In each irreducible translation-invariant field

system A(~), one can apply a result from [7~] as extended by Longo [19,

Annales de l’Institut Henri Poincaré - Physique theorique



157CENTRAL DECOMPOSITION OF POINCARE-INVARIANT NETS

Theorem 3 ] to conclude that F(W)(03B6) is a type III1 factor for each W E W
(v-almost everywhere) ; here one must use Prop. 3.1 (2) and (6). Therefore,
both ~(0 and .~ (W)(~) V ~(W)(0’ are irreducible in Jf(0. From the

ye

proof of Prop. 3.1, ~(~) c~(jF(W)); thus .~(W) = 

[13, Section 11.3]. One can then conclude ~(~)=~(~(W)) from [13,
Cor. II. 3 .1 (ii ) ].

(2). 2014 F ~ F(~) does not yield a representation of ~ on unless

there is a projection P E~(.~ ) such that Jf(~) = i. e. unless .~(0
is a direct summand.
We can now give a quick proof of Lemma 3 . 2.

Proof of Lemma 3.2. 2014 As already noted in the preceding Remark,
F(W)(03B6) is a type III1 factor for all and v-almost all 03B6. One can

ye

conclude from [13, Corollaire 11.5.2] ] that .~(W) = ~(W)(0~(0 is

itself type III, for any W E ~. D

V SPONTANEOUS BREAKING
OF LORENTZ GROUP SYMMETRY

IrL [7] ] Araki gives an example of a Poincare-invariant field system

{ ff, U(P~+), Q, { F(O)}, Z ]- such that no vector in P0H is invariant under
the Lorentz subgroup U(~) ofU(~). His construction was carried out
for a net of observable algebras { j~(~)}, but it works as well for a net of
field algebras. Therefore, in the decomposition given in Theorem 4.1,
the Lorentz group symmetry is spontaneously broken in each ~f(0. i. e. the
representation U(~) decomposes into unitary representations U(J2~)(~)
in ff( () only for a collection of (’s contained in a set of v-measure 0, as
can be seen by examining his example. And in the Appendix we present
an example of a Poincare-invariant field system wherein the special vector Q
is U(ø&#x3E;  )-invariant (and is the only such vector in Poff), but dim (Po) &#x3E; 1.
Once again, in this new example the Lorentz group symmetry is sponta-
neously broken in each ~f(0. We now show that the group U(ø&#x3E;) decom-
poses properly if and only if every vector in P0H is U(P~+)-invariant.

PROPOSITION 5.1. - U(P~+), Q, { F(O)}, Z } be a Poincare-
invariant field system. The following are equivalent.

(1) Every vector in P0H is invariant under U(P~+).
(2) U(ø&#x3E;) c~(~/(= .~ ).
(3) Under the central decomposition of ~, U(ø&#x3E;) decomposes into a

direct integral of strongly continuous unitary representations of (the
universal covering group of) the Poincare group ø&#x3E;  .

Vol. 43, n° 2-1985.



158 W. DRIESSLER AND S. J. SUMMERS

Remark. - In two space-time dimensions the implication (2) ~ ( 1 )
is not true. The implication (1) ~ (3) was shown in [1 ], using another
argument.

Proof 2014 It is clear from the proof of Theorem 4.1 and [13, Section II. 3] ]
that (2) and (3) are equivalent. Assume now (2) or (3). Since the translations
form an invariant subgroup of ~, it is easy to see that = Po~,
VÀ E 2. Thus, Po E U(2)’. It therefore follows that = 

defines a strongly continuous unitary representation of 2 . But it was
seen in the proof of Prop. 3.1 that Po .~ Po is Abelian. By (2), Vo(2) must
be Abelian, which is only possible, in three or four space-time dimensions,
if the representation is trivial. Thus, 
proving ( 1 ).

If, on the other hand, one assumes ( 1 ), then for any H e~(~) and ~, E ~,
HQ = = But U(~,)~(~~ )U(~,) -1 - ~F), so
H = U(~,)HU(~,) -1, since Q is separating for~(.~ ). Thus, (2) follows. Q
We next show that any in the central decomposition of ~f that

actually occurs as a direct summand must reduce the entire Poincare
group representation U(~+), not just the translations. Thus, the spontaneous
breaking of the Lorentz group symmetry can only occur when the (up
to measure isomorphism unique) measure space (S, v) given in Theo-
rem 4.1 is not purely atomic.

PROPOSITION 5 . 2. - Let {H, U(P~+), 03A9, {F(O)}, Z} be a Poincare-
invariant field system, and let (S, v) be the measure space given by Theo-
rem 4.1. Then for any’ E S such that v(Q &#x3E; 0, U(~)(0 == U(ØJ) ~ 
is a strongly continuous unitary representation of the Poincare group,
and {H(03B6), U(P~+)(03B6), 0(0, { F(O)(03B6)}, Z(0} is an irreducible, Poincare-
invariant field system.

Proof 2014 If v(~) &#x3E; 0, then there exists a projection P~e~(~) (corres-
ponding to the characteristic function of ~ in dv)) such that ~f(~)
and ~(0 = P~P~. In light of Theorem 4.1, it suffices to show that

Assume there is a ~, E ~+ with U(~,)P~U(~,)-1 * P~. By the strong conti-
nuity there exists a and an open neighbourhood J~ ~ ØJ
of ~,o such that U(~,)P~, ~,oU(~,) -1 ~ Pç.;.o for all where

Moreover, there exists a i~ 1 E -~ such that the projection

is nonzero. Of course, P  P~,~,o , and 0 both are " contained in ~(~ ). But
~(~) ~ ~ is trivial by Theorem 4 .1, so that P = ’ entailing ’
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P~, ~,o _ U(~,1 )P~, ~,oU(~,1 ) -1. Hence, once again P~, ~,o = U(~,1 )P~, ~,oU(~,1 ) - l,
a contradiction. D
There is, however, an interesting property in the context of Poincare-

invariant field systems that insures that the representation of the Poin-
care group in a field system A has the proper action on (F) in order
to be able to decompose. This property is probably not a necessary condi-
tion, but we discuss it here in some detail because it has other interesting
consequences and because it is very likely to be closely related to the implicit
presence of quantum fields. As we shall see in Section 6, implements
the Poincare transformations on a relativistic quantum field satisfying
the Wightman axioms, then every vector in P0H is This
is due to additional analyticity properties inherent in quantum fields [77],
that are not at hand in the general algebraic framework. The condition
to be discussed provides at least enough additional analyticity that the
properties (1)-(3) in Prop. 5.1 hold: this is the lesson presented here. To
formulate this condition we must recall some facts from the Tomita-
Takesati theory [20 ]. ,

is a cyclic and separating vector for the von Neumann algebra ~,
then there exists an antiunitary involution J and a positive, selfadjoint
(generally unbounded) operator A such that c D(~1/2), the domain
of definition JC == 0, and

Also = is called the modular automorphism group
of { ~~, ~ ~ and J the modular conjugation.
Given a Poincare-invariant field system A, we consider ~~ _ ~(W;),

where W~ --- ~ x E ~4 I I  = 1, 2, 3 (thus W1 = and let
~ 

= 0) be the Abelian group of unitaries implementing the
Lorentz velocity transformations in the xj-direction, j = 1, 2, 3. Then
by the Lorentz invariance of the net, Vj(t)F(Wj)Vj(t)-1 = F(Wj), j = 1, 2, 3,
for any t E [R. In other words, the restriction of the action of the appropriate
Lorentz velocity transformation to the appropriate wedge algebra yields
a group of automorphisms of this algebra. Although Prop. 3.1 assures
us that the Tomita-Takesaki theory can be applied to {.~(W), Q}, W E ~,
the above mentioned automorphism groups need not coincide with the
modular automorphism groups. Indeed, the examples in the Appendix
and in [1] ] are incidences of this noncoincidence. This can be seen as follows.
The coincidence we are speaking of means precisely

where ðj is the modular operator of { Q }. (Note that we do not
specify which parametrization of the velocity transformations leads to

the equality (5 . 2) - any would do.) It has already been mentioned that
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) in Araki’s example no vector in P0H and that in the example in the Appendix
only Q is invariant under { = 1, 2, 3. If, however, (5 . 2) is assumed ,
every vector in P0H is U(P~+)-invariant. This is shown in the following
proof.

PROPOSITION 5.3. 2014 If {H,U(P~+), 03A9, {F(O)}, Z} is a Poincare-
invariant field system and (5 . 2) holds, then U(P~+) c F and, at least
in more than two space-time dimensions, 03A6 ~ P0H implies U(/L)C = C.
all ~, E ~+ .

Proof - From Prop. 3 .1 (7) one has~(~)=~(~(W))~~(W)Q,
the centralizer of Q in ~(W), defined by

However, for any F E F(W)03A9, 0394itF0394-it = F, Vt E R, where A is the modular
operator for { ~(W),Q} [20, Lemma 15 . 8 ]. Thus.~(~) is elementwise
invariant these operators are therefore
contained in ~. Thus, arguing as in the proof of Prop. 5.1, the velocity
transformations (in three orthogonal directions) in must gene-
rate together an Abelian group. Hence, the generators 
j = 1, 2, 3, must commute on By the algebraic relations of the Lie
algebra of the Lorentz group, this implies once again (in three or more
space-time dimensions) that PoU(ø&#x3E;)Po must be trivial. Thus, U(~)D==C

Since in two space-time dimensions the Lorentz group consists
solely of velocity transformations in one direction, the proposition is

proven. D

Remark. - Note that Prop. 5.3 implies that (5.2) is equivalent to
= all t = 1, 2, 3, at least in more than two space-time

dimensions.

Propositions 5.1 and 5.3 entail that (5.2) is a sufficient condition to
exclude spontaneous symmetry breaking of the Lorentz group in the pure
phases of the theory. Yet another consequence of (5.2) is that the wedge
algebras {.~(W) ~ W E ~’ ~ satisfy (twisted) duality.

PROPOSITION 5.4. Given the hypothesis of Prop. 5. 3, ~(W)’=~(W~,
for any W E ’~l~’.

Proof 2014 By Poincare invariance it suffices to 
Since ~ (WR)’, one has from the Tomita-Takesaki theory [2~]

and J0394-1/21A03A9 = A*Q, for any And

by Poincare invariance and the equality for any t E IR, one has
= for all t E IR. Since the same is true of .~(WR)’,

which has Q as a separating vector, the proof of Theorem 2 (e) in [6] gives
the desired equality ~(W/)~ == ~ (WR)’. D
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In the following theorem we summarize results relevant to the central
decomposition of ~, and we show that the equality of the modular auto-
morphism groups of the wedge algebras with the appropriate Lorentz
velocity transformations is conserued in the decomposition.

THEOREM 5 . 5. - Let A = U(P~+), 03A9 {F(O)}, Z } be a Poincare-
invariant field system such that the modular automorphism group

{ of { ~~ (W~ ), S2 ~ coincides with the automorphism group 
implemented for each j = 1, 2, 3 (i. e. (5 . 2) holds). Then the
central decomposition of .~ leads to a unique integral decomposition of A
into irreducible, Poincaré-invariant field systems. Precisely, one has the
conclusions of Theorem 4 .1 and a measurable family of strongly continuous,
unitary representations of (the universal covering group of) the Poincare
group, ~ --~ U(~)(Q, satisfying the spectrum condition for v-almost all ~,
such th at

and for v-almost all ~ { ~f(0, U(~~)(Q, Q(Q, { ~)(0 }, Z(0 } is an irre-
ducible, Poincare-invariant field system. In addition, the modular auto-
morphism group { o-~(0 of { ~(W~)(0, 0(0 } coincides with the auto-
morphism group on ~(W~)(D implemented for j = 1, 2, 3,
and for v-almost all (. Moreover, ~(W)(~ = ~(W~)(0~~), for any W E ~.

Proof. One proceeds as in the proof of Theorem 4.1, except that the
operators in are conjugated in addition by the operators U(~), where ~,~
is an element of the subgroup ~r of the Lorentz group 2  that leaves the
set Hr invariant. r is countable, so R remains countable. Since by Prop. 5 . 3

U(ø&#x3E;) c ~, the operators U(ø&#x3E;) are all decomposable. Once again there -

exists a set N ~ S with v(SBN) = 0 such that for all F E all 

and all ( E N,

If r is dense in it is clear that one can construct a Poincare-

in variant field system A(Q for each ( in a set with complement of
v-measure zero.

To see that ~r is dense in 2 , consider as an example the velocity trans-
formations in the 1-direction :

To be in 2n cosh t and sinh t must be rational. Since 2,. is a group, it
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suffices to show that every neighbourhood of the identity ~(0) contains an
element ~,(t) E J~, (excluding ~(0), of course). But this can be done by the
velocity transformations of the form

A similar argument clearly functions for the other subgroups of 2  .
Thus the only claim in the theorem that is not now obviously true is the
identification of the modular automorphism (this
is prima facie an abuse of notation, but it will be shown not to be) of

{ ~(W~)(0, ~(0 } with the automorphism group on ~(W~)(0 implemented
by{V~)(0}~. 

~e
In [17, Theorem III . 3 ] it is shown that if A =  A(03B6)d (03B6) is a decom-

0

posable von Neumann algebra in a separable Hilbert space, 4&#x3E; = ~(~)d,u(~)
0

a normal, faithful, strictly semifinite weight on ~(~)d,u(~), where ( -~ 4&#x3E;( ()

is a measurable field of normal, faithful, strictly semifinite weights on

{ j~(0 }, and Tf (resp. Qt(~)) is the modular automorphism group of { j~, ~ }

(resp. { ~(0, ~(0 }), then 7, = ~ ~(0~(0. for every t E ~.

Of course, here j~ = ~(W), any W E ~’, and the decomposition of ~
is that given by the center of ~ (Theorem 4.1). The vector Q (resp. Q(0)
determines a normal, positive, linear form on .~ (W) which

is by Prop. 4 . 2 of [27] a normal, strictly semifinite weight on .~ (W) (resp.
.~(W)(0). Since, moreover, is separating for .~ (W) (resp.
~(W)(0), the weight it determines is faithful on .~ (W) (resp. ~(W)(0).
Thus, the result from [77] may be applied to the present case.

Since the equation (5 . 2) also decomposes, i. e. the equality = t1 ~t,
We [R, 7 = 1, 2, 3, carries over to V~)(0 = ð.1((), for v-almost all ~, the

proof of the claim is now clear. (At the cost of possibly another set of
v-measure zero, this equality is established for all 03B6 ~ N and all rational t ;

strong continuity completes the argument.) D
Before closing this section, we would like to point out a further interesting

consequence of the equality ~(.~ ) _ ~(.~ (W)), any W E ~’.
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PROPOSITION 5 . 6. U(P~+), 03A9, {F(O)}, Z } be a Poincare-inva-
riant field system. Then for any W E W, if A is the modular operator for

{ Q}, Dit implements an inner automorphism of ~~ , i. e. = ~
Vt E ~, and { A" ~.

Proof - By the Tomita-Takesaki theory,

And by Prop. 3 .1 (4 and 7), one has .~ = .~(W) V .~ (W)’. As has already
been seen in the proof of Prop. 5 . 3, ~(~ ) _ ~(~ (W)) c ( { A" }~/. Since
~(~ ) _ it follows that A" E ff, dt E [R. D

Thus, if (5 . 2) does not hold, the theory has many additional symmetries
that would have to be understood. It could happen that in a concrete case
one could exclude the existence of such additional symmetries, thereby
demonstrating that (5 . 2) must obtain, along with the consequences we have
shown.

VI. IN THE PRESENCE OF A QUANTUM FIELD

As mentioned in the Introduction, if we are given a Poincare-invariant
field system A = { ~f, U(~), Q, { ~(~)}, Z} and a relativistic quantized
field satisfying the usual axioms [22] ] [23 ], which transforms under

U(P~+) and which has Q as a cyclic vector, then all vectors in P0H are
U(ø&#x3E;)-invariant [11, Theorem 3 ]. (Note, however, that Q must itself already
be U(P~+)-invariant in order to use [11 ]. This assumption is a component
of the axioms in [22 ] [23 ].) Thus, as we have seen in the proof of Prop. 5 .1
using Prop. 3.1, U(ø&#x3E;) c: , and we can conclude that the central decompo-
sition of ff leads to a direct integral of Poincare-invariant field systems.
Therefore, if there is a quantum field about, which is weakly related to A
as above, then the Lorentz symmetry cannot be spontaneously broken
in the decomposition into pure phases.
What is more, if there is such a quantum field which satisfies, in

addition, the following equation (we state it for simplicity’s sake for the
case of a Hermitian scalar field the more general case can be found in [ 7 ]) :

for all X E the set of all polynomials of field operators averaged
with test functions f with support in WR, then { ~ (C~) ~ satisfies a special
condition of duality (see [9] ] [7~] for details), which itself implies the equa-
tion (5.2).

Either the condition (5.2). holds only when a quantum field satisfying
the properties above, along with (6.1), exists, in which case (5.2) would
be a beautiful necessary and sufficient condition, formulated solely in
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the framework of the algebraic relativistic quantum theory, for the implicit
presence of such a field, or it holds more generally. Even then its combination
of the analyticity properties related to the KMS boundary condition
of the modular automorphism group (see e. g..Chapter 13 of [20 ]) and the
geometric properties of the Lorentz group, which is implicit in the proof
of Prop. 5. 3, is likely to have more far-reaching consequences than those
we have discussed here particularly in the direction of bringing the exten-
sive analyticity properties of field theories [22] ] [2~] ] [77] into the algebraic
relativistic quantum theory.
Whatever the situation, and we would not be surprised if (5.2) along

with technicalities really does signify the presence of some field in the sense
of the second paragraph, this matter is worth further examination.
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APPENDIX

In this appendix we construct a class of examples of Poincare-invariant field systems
{ U(£~), Q, { ~(~)}, Z }, wherein the special vector Q is the unique (up to a phase
factor) U(P~+)-invariant vector in H and the subspace P0H is not one-dimensional. The
groups of modular automorphisms of the wedge algebras do not, therefore, coincide with
the action of the Lorentz velocity transformations on these algebras (Prop. 5 . 3). We produce
examples of the above situation where duality holds and examples for which it does not hold.

x) = f (x) ~ is the set of real-valued functions in
and let ~p(x) be the free scalar Hermitian field of mass m on the Fock space ~m [22 ].

For any f, g E ’Ii, the commutator [(~(/), ~p(g) ) is an antisymmetric operator, so that [~(/),
~p(g) ] E ~ irI since it must be proportional to the identity operator I on ~m. On the
other hand, if 0 is the TCP-operator for the field ~), we have, since 0~(/)0 = 
for any f E T,

since E&#x3E; is antiunitary. Therefore, the Weyl groups generated by the (selfadjoint) closures
of { on Do, the usual domain of definition [22 ], commute pairwise and generate
an Abelian von Neumann algebra ~. Let be the usual unitary representation of
the Poincare group on Since the set  is invariant under the induced action of the
Lorentz group J~j., the corresponding subgroup c acts automorphically
on ~/.

Now let SZm be the (up to a phase factor unique) Um(P~+)-invariant unit vector in Fm
and define (8) A03A9m (the closure taken in Also let Q = SZm (8) Define

to act on H as (8) in the obvious manner and to act on Fm
as and as the identity on ~S2m. For each ~ ~ set ~ (C~) == ~m(U~ ) (8) j~, where
~m(U~ ) is the von Neumann algebra generated by the Weyl groups generated by the closures
of f E taken to be the identity The thusly defined quintuple
{ ~f, U(~]-), Q, { ff( (!)) }, Z } is easily seen to be a Poincare-invariant field system. Moreover,
S2 is the only unit vector in H, while the subspace C03A9m (8) A03A9m is T(Rd)-
invariant. Thus, we may use Prop. 5. 3 to conclude that the modular automorphism groups
of the wedge algebras do not coincide with the action of the appropriate Lorentz velocity
transformations. 

___

Since j~ is maximally Abelian in we see by the known duality of the free field [24]
that for any J~)=~(~ 0~=jFJ~)0A=~(~). Thus, duality holds for
this net of local algebras. If we define ~((~) to be the von Neumann algebra generated by the
field operator as above but taking only those f ~  with support in c; u - (!), then
with ~o(U~ ) = ~m((~) (8) ~((~), we once again can define a Poincare-invariant field system.
{ U(~), Q, { ~o(~)}. Z } with dim (?o ?f) &#x3E; 1 and Q the only vector,
where, however, duality is not satisfied (since ~(U~ ) ~ ~, for any (!) E lf’’).
We remark that in these examples any known net of local field algebras can replace

{ ~m(U~ ) ~ in the first factor of { ~ ((~) }. If this new set satisfies (twisted) duality, all results
above are unchanged, and if (twisted) duality fails, only the assertions concerning duality
must be dropped.
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