@article{AIHPA_1985__42_4_383_0, author = {Kirsch, W. and Kotani, S. and Simon, B.}, title = {Absence of absolutely continuous spectrum for some one dimensional random but deterministic {Schr\"odinger} operators}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {383--406}, publisher = {Gauthier-Villars}, volume = {42}, number = {4}, year = {1985}, mrnumber = {801236}, zbl = {0581.60052}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1985__42_4_383_0/} }
TY - JOUR AU - Kirsch, W. AU - Kotani, S. AU - Simon, B. TI - Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators JO - Annales de l'I.H.P. Physique théorique PY - 1985 SP - 383 EP - 406 VL - 42 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1985__42_4_383_0/ LA - en ID - AIHPA_1985__42_4_383_0 ER -
%0 Journal Article %A Kirsch, W. %A Kotani, S. %A Simon, B. %T Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators %J Annales de l'I.H.P. Physique théorique %D 1985 %P 383-406 %V 42 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1985__42_4_383_0/ %G en %F AIHPA_1985__42_4_383_0
Kirsch, W.; Kotani, S.; Simon, B. Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators. Annales de l'I.H.P. Physique théorique, Tome 42 (1985) no. 4, pp. 383-406. http://www.numdam.org/item/AIHPA_1985__42_4_383_0/
[1] Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J., t. 50, 1983, p. 369-391. | MR | Zbl
and ,[2] A metal-insulator transition for the almost Mathieu model, Commun. Math. Phys., t. 88, 1983, p. 207-234. | MR | Zbl
, and ,[3] Subharmonicity of the Lyaponov index, Duke Math. J., t. 50, 1983, p. 551-560. | MR | Zbl
and ,[4] Potential Scattering, North Holland, Amsterdam, 1965. | MR | Zbl
and ,[5] Inverse Scattering on the Line, Comm. Pure Appl. Math., t. 32, 1979, p. 121-251. | MR | Zbl
and ,[6] On the one dimensional Schrödinger equation with quasi-periodic potential, Funk Anal. i Pril., t. 9, 1975, p. 8-21. | MR | Zbl
and ,[7] A pure point spectrum of the stochastic and one dimensional Schrödinger equation, Funct. Anal. Appl., t. 11, 1977, p. 1-10. | MR | Zbl
, and ,[8] The Stark ladder and other one-dimensional external field problems, Commun. Math. Phys., t. 80, 1981, p. 23. | MR | Zbl
and ,[9] Discriminant, transmission coefficients and stability bands of Hill's equation, J. Math. Phys., to appear. | Zbl
,[10] On a class of random Schrödinger operators, to appear in Adv. Appl. Math. | MR | Zbl
,[11] On the spectrum of Schrödinger operators with a random potential: Commun. Math. Phys., t. 85, 1982, p. 329-350. | MR | Zbl
, ,[12] On the ergodic properties of the spectrum of general random operators: J. Reine Angew. Math., t. 334, 1982, p. 141-156. | MR | Zbl
, ,[13] Lyaponov Indices Determine Absolutely Continuous Spectra of Stationary Random One-Dimensional Schrödinger Operators, Proc. Stoch. Anal., Kyoto, 1982. | Zbl
,[14] Support Theorems for Random Schrödinger Operators, Commun. Math. Phys., to appear. | MR | Zbl
,[15] Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys., t. 78, 1980, p. 201-246. | MR | Zbl
and ,[16] Hill's Equation, Interscience, 1966; Dover Edition available. | Zbl
and ,[17] The theory of impurity conduction, Adv. in Physics, t. 10, 1961, p. 107-155.
and ,[18] Inverse scattering by a local impurity in a periodic potential in one dimension. J. Math. Phys., t. 24, 1983, p. 2152. | MR | Zbl
,[19] Methods of modern mathematical physics. III. Scattering theory, Academic Press, New York, 1979. | MR | Zbl
and ,[20] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978. | MR | Zbl
and ,[21] Kotani theory for one dimensional stochastic Jacobi matrices. Comm. Math. Phys., t. 89, 1983, p. 227. | MR | Zbl
,[22] Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR | Zbl
and ,[23] Linear Operators, Vol. II, Wiley, New York, 1963. | MR | Zbl
and ,[24] Schrödinger operators with singular potentials. Israel J. Math., t. 13, 1973, p. 135-148. | MR | Zbl
,[25] On the essential selfadjointness of stochastic Schrödinger operators, Duke Math. J., t. 50, 1983, p. 1255-1260. | MR | Zbl
and ,