Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
Annales de l'I.H.P. Physique théorique, Tome 41 (1984) no. 2, pp. 171-189.
@article{AIHPA_1984__41_2_171_0,
     author = {Cardin, Franco},
     title = {Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {171--189},
     publisher = {Gauthier-Villars},
     volume = {41},
     number = {2},
     year = {1984},
     mrnumber = {769154},
     zbl = {0568.76125},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1984__41_2_171_0/}
}
TY  - JOUR
AU  - Cardin, Franco
TI  - Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1984
SP  - 171
EP  - 189
VL  - 41
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1984__41_2_171_0/
LA  - en
ID  - AIHPA_1984__41_2_171_0
ER  - 
%0 Journal Article
%A Cardin, Franco
%T Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
%J Annales de l'I.H.P. Physique théorique
%D 1984
%P 171-189
%V 41
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1984__41_2_171_0/
%G en
%F AIHPA_1984__41_2_171_0
Cardin, Franco. Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics. Annales de l'I.H.P. Physique théorique, Tome 41 (1984) no. 2, pp. 171-189. http://www.numdam.org/item/AIHPA_1984__41_2_171_0/

[1] T. Alts and I. Müller, Relativistic Thermodynamics of Simple Heat Conducting Fluids. Arch. Rat. Mech. Anal., t. 48, 1972, p. 245. | MR | Zbl

[2] M. Berger and M. Berger, Perspectives in nonlinearity. W. A. Benjamin, Inc. New York, 1968. | Zbl

[3] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 278 A, 1974, p. 909. | MR | Zbl

[4] G. Boillat and T. Ruggeri, Limite de la vitesse de chocs dans les champs à densité d'énergie convex. C. R. Acad. Sci. Paris, t. 289 A, 1979, p. 257. | MR | Zbl

[5] G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mechanica, t. 35, 1980, p. 271. | Zbl

[6] A. Bressan, Relativistic Theories of Materials, Springer-Verlag, Berlin, Heidelberg, New York, 1978. | MR | Zbl

[7] A. Bressan, On Relativistic Heat Conduction in the Stationary and Nonstationary Cases, the Objectivity Principle and Piezo-elasticity. Lett. Al Nuovo Cimento, t. 33, n° 4, 1982, p. 108. Addendum On Relativistic Heat Conduction... Lett. Al Nuovo Cimento, t. 34, p. 63.

[8] A. Bressan, On the Relativistic Nonstationary Law of Heat Conduction and the Objectivity Principle, Piezoelasticity. Being printed on B.U.M.I. (Bollettino dell' Unione Matematica Italiana). | Zbl

[9] B.D. Coleman and W. Noll, The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. Arch. Rat. Mech. Anal., t. 13, 1963, p. 167. | MR | Zbl

[10] A.E. Fisher and J.E. Marsden, The Einstein Evolution Equations as a First-Order Quasi-Linear Symmetric Hyperbolic System, I. Commun. math. Phys., t. 28, 1972, p. 1. | MR | Zbl

[11] A.E. Fisher and J.E. Marsden, General Relativity, Partial Differential Equations and Dynamical System, Proc. Symp. Pure Math., t. 23, Ed. by C. Spencer, 1973. | MR | Zbl

[12] K.O. Friedrichs, Conservation Equations and the Laws of Motion in Classical Physics. Comm. Pure Appl. Math., t. 31, 1978, p. 123. | MR | Zbl

[13] K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686. | MR | Zbl

[14] S.K. Godunov, An interesting class of quasilinear systems. Sov. Math., t. 2, 1961, p. 947. | Zbl

[15] E. Massa and A. Morro, A dynamical approach to relativistic continuum mechanics. Ann. Inst. Henri Poincaré, Sect. A, t. 29, 1978, p. 423. | Numdam | MR | Zbl

[16] I. Müller, Towards Relativistic Thermodynamics. Arch. Rat. Mech. Anal., t. 34, 1969, p. 259. | Zbl

[17] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic Fluid Dynamics. Ann. Inst. Henri Poincaré, Sect. A, t. 34, 1981, p. 65. | Numdam | MR | Zbl

[18] J. Serrin, Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, Band VIII, Berlin-Göttingen-Heidelberg ; Springer 1959. | MR

[19] C.A. Truesdell and R.A. Toupin, The Classical Field Theories. Handbuch der Physik, Band 111/1, Berlin-Göttingen-Heidelberg; Springer 1960. | MR