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A singular lagrangian model
for N-body relativistic interactions

J. GOMIS, J. A. LOBO, A. POCH J. M. PONS
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Universitat de Barcelona

Ann. Inst. Henri Poincare,

Vol. 40, ~1,1984, Physique ’ théorique ’

ABSTRACT. - We reformulate a multitemporal model for N-particles
by means of a constrained system described by a singular lagrangian.
We deduce the canonical transformation adapted to second-class constraints
and discuss the quantization of the model.

RESUME. - On reformule un modele a plusieurs temps pour N parti-
cules sous forme d’un systeme avec contraintes decrit par un Lagrangien
singulier. On obtient la transformation canonique adaptee aux contraintes
de deuxieme espèce et on discute la quantification du modele.

I INTRODUCTION

During the last years the problem of the instantaneous action-at-a dis-
tance Relativistic Dynamics has received increasing attention [1]. This
has essentially developed along the following approaches : a) Predictive
Relativistic Mechanics (P.R.M.) [2] ] [3 ]. b) Constrained Systems (C.S.) [4 ].
The construction of explicit models depends on the choice of the set of
constraints, and this can be made in several ways. One can use the Todo-
rov-Komar approach with N first class constraints mass shell cons-
traints2014(N= number of particles) [5] ] [6] ] [7], but this approach, as

has been recognized by several authors [8] ] [9] ] [10 ], is gauge dependent,
i. e. dynamically incomplete. Another possibility consists in giving one
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first class constraint the mass shell condition of the system and 2(N -1)
second class constraints [77] ] [12 ] [73] ] [7~] ] [7 J] or, as recently suggested,
one can give 2N second class constraints [76] ] [17 ], one of them depending
explicitly on the evolution parameter. c) Canonical realizations of Poin-
care Group [18 ]. Historically this was the first. The first explicit realiza-
tions proposed [79] ] [20] were not physically relevant because one could
not construct world lines. Recently by means of constrained systems
one has given physical sense to this realizations, relating the canonical
coordinates of the realization and the physical positions of the world
lines [27] ] [22 ].

It has also been made clear that there are deep connections between
different approaches ; in refs. [2.? ] [24 [25] ] one can see the relation between
approaches a) and b), while the relation between approaches b) and c) is
given in refs. [27] ] [22] [2J] ] [26].

In all cases the cluster decomposition property [20] ] is the most diffi-
cult problem. Some particular solutions in closed form at quantum level [27]
are known and only recently a perturbative solution [28 ] [29] using the
Todorov-Komar approach has been developed. Another possible way
to attack this problem was suggested recently by different authors [30] ] [17]
by means of an appropriate set of 2N second class constraints.

In this work, we put aside the problem of separability and we give a
very simple model of a non-separable interaction, whose principal virtue
is the simplicity, which enables us to further relate the different formula-
tions. It is also very easy to obtain the quantization of the model and can
be useful for phenomenological applications for the bound state problem.
The model presented in this paper is a reformulation of the multitem-

poral model of references [37] ] [32] for energy independent interactions.
It is based on a singular Lagrangian and 2N -1 constraints. It is interesting
to emphasize that this model does not give the usual Hamiltonians or
mass shell constraints.
The organization of the paper is as follows. In section 2 we give the Lagran-

gian and the constraints. In section 3 we work out explicitly the Shanmuga-
dhasan transformation adapted to the second class constraints which
enables us to discuss in section 4 the weak quantization of the model and
make some comments about other possible types of quantization. We add
two appendices at the end which complete the text.

II THE LAGRANGIAN FUNCTION

In a previous paper [7~] written by some of us we carefully analysed the
structure of the two-body models existing in the literature and came to

. 

the conclusion that, in spite of the variety of Lagrangians giving rise to
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61LAGRANGIAN MODEL FOR N-BODY RELATIVISTIC INTERACTIONS

the same set of constraints this variety owing to the different possible
sets of primary constraints2014, all of them reduce to the same functional
form when the variables are made to satisfy the constraint equations.
Also, this form turned out to be a very simple one : _

where U is a scalar function depending on the relative separation. The
constraints for these model were

with x  _ - 2 (xi + x 2) the C. M. coordinate, and ru = x2 - xi .
In all cases the masses of the particles were forced to be equal. In par-

ticular, the DGL model, which explicitly allows for different masses of
the particles, has to be considered in the region m 1 = m2 in order to fulfill
(2 .1 ) and (2 . 2).

This formulation of the two-body problem immediately suggests a

generalization for more particles. The Lagrangian would become

where U is a scalar function of the relative variables (k= 2,... ,N),
and where all variables are subjected to the 2N - 2 constraints.

x"~ being, like before, the CM coordinate

This proposal based on (2. 3) and (2.4) is not subjected to contradiction
and constitutes a novel point of view of the N-particle problem. Indeed,
by use of the constraints (2.4) one reduces to 6N + 2 the number of inde-
pendent degrees of freedom, one more being eliminated at the Lagrangian
level by a gauge fixing constraint (see equation (3.7) below) whose
existence is guaranteed by the homogeneous (of degree one) character
of (2 . 3). This further reduces to 6N + 1 the number of independent degrees
of freedom, which can be identified with positions and velocities of the
particles with respect to a certain inertial observer plus a parameter, to ,
giving for example the CM initial time. It can be easily seen, moreover,
that this to is non-essential parameter in the sense that, upon elimination
of the evolution parameter /)., the positions and velocities of the particles
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depend only on increments t - to. This is ultimately due to the existence
of a CM variable Thus, finally, our model remains with the right number
of independent degrees of freedom, i. e. 6N.
One could try to slightly generalize the Lagrangian (2.3) by inserting

constant weights

This, however, may lead to trouble as we see in appendix A, where it is
shown that for N = 2, allows for the existence of tachyonic states
of motion in a two-particle harmonic oscillator.
On the other hand, the introduction of such weights does not even allow

to include particles with different masses in the model. In reference [~7] ]
it is discussed the way in which one should identify the masses of the par-
ticles within the multitemporal version of this model, even letting ai be

constants of motion instead of a riori constants. There is,

therefore, no point in considering (2 . Sl and we, in the sequel, will only
work with the Lagrangian (2. 3) and the set of consistent constraints (2.4).
The question naturally arises of whether it is possible or not to have

one single Lagrangian function giving rise to the whole set of constraints
(2. 4). In appendix B we analyse this point and formally show the existence
of such Lagrangian with auxiliary variables. The elimination of these
variables depends on the solution of an algebraic equation of degree N
in general and this, of course, is of little practical interest. Nevertheless
explicit knowledge of such Lagrangian would not provide us with addi-
tonial physical information. Therefore we can carry on our analysis with
the simpler point of view expressed by (2. 3) plus (2.4).

III. EQUATIONS OF MOTION
AND HAMILTONIAN FORMALISM

The Euler-Lagrange equations

can be written
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63LAGRANGIAN MODEL FOR N-BODY RELATIVISTIC INTERACTIONS

where is the Hessian of F with respect to the velocities

Let us recall that we have assumed that U is independent of the velocities
and we will also do so in the sequel; we thus find

The hessian matrix (3.3) has only one null vector

but there are no constraints since according

to (3.4). This is a rather general result for Lagrangians of the type (2.3).
Now we easily isolate the accelerations from (3.2)

/~) being an undetermined arbitrary function. It fulfils

as can be verified by a straightforward derivation.
Eqs. (3.6) must be completed with the constraints

which are stable under (3 . 6). Let us observe that these equations of motion
are those of ref. [.?7 ], the latter being deduced within the framework of
a multitemporal model. That model is therefore the predictive extension
of the one proposed in the present paper.

Let us now define canonical momenta

Vol. 40, n° 1-1984. 3
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They are not independent but satisfy the identity

which, according to Dirac, must be considered as a primary Hamiltonian
constraint. There are no more primary constraints so that the evolution
Hamiltonian is simply

because the canonical Hamiltonian is zero is homogeneous of 1 st degree
in xj; Uo is an undetermined function. The equations of motion are then

with the fundamental brackets {~~~~} = 2014 Through the iden-
tification

we recover the set (3. 6). Now we must add to (3.12) the constraints (3. 8)
in order to keep the correct number of independent initial conditions.
We have, of course, to write them in terms of canonical variables :

where P~ is the total momentum of the system

Equations (3.14) can be replaced by the more convenient set

where

are canonical variables. We can also rewrite 
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The new constraints do not affect the equations of motion because all
of them are second class, 4Jo remaining the only first class constraint (if
P2 ~ 0, what will always be the case here) :

Thus we see that the Hamiltonian formalism can also be consistently
constructed.

IV . SHANMUGADHASAN’S TRANSFORMATION

In order to complete the Hamiltonian formalism one can define Dirac
brackets and isolate the independent canonical variables with respect to
such brackets. Or else one can follow Shanmugadhasan’s method [33] ] [34 ],
what amounts to writing down the set of independent variables as a subset
of a set of canonical variables related to the initial ones through a local
canonical transformation. The existence of such transformation is gua-
ranteed by some theorems on involutory systems [~J] ] [36] and transfor-
mation groups [37 ]. We will rather use the latter method in this section.
The Shanmugadhasan’s transformation adapted to the second class

constraints can be carried out in our case by straightforward algebra. It does
not depend on the interaction because the second class constraints (3 .16 a)
do not depend on the potential, and it is therefore very general [38 ].

If one wants to complete the transformation so as to have also a canonical
variable adapted to the first class constraint (3 .16 b), one sees that there
is no closed solution for a general rk-dependent potential. This problem
is actually equivalent to solving the Hamilton-Jacobi equations [34 ].
We do not touch here this question.

Let us then study the transformation adapted only to the second class
constraints. Since P2 ~ 0 we can define
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These are pairs of canonical variables, for

the rest of the brackets being zero, and they are obviously adapted to the
second class constraints (3.16). Now we must complete the set of canonical
variables by finding solutions of the system of partial differential equations

such that they are canonical amongst themselves.
Due to relations (4 . 2), the general theory [35 ], [~7] ] guarantees the

existence of 8N - 2(N -1) = 6N + 2 independent solutions of (4 . 3), just
sufficient to complete the set (4 .1 ).
There are four obvious solutions of (4. 3) namely the four components of
we call X~‘ their corresponding canonically conjugate solutions. Let the

6(N -1 ) remaining solutions be noted (~=1, 2, 3 ; k = 2, ... , N),
also grouped into canonical pairs.

Let us assume that the latter solutions are independent of if that
is the case (4. 3) imply

whose easiest solution is

where are polarization vectors [~9] ] satisfying

The quantities (4.5) have the nice property that they are canonical
amongst themselves

and also that they commute with whence we have only to determine
the four functions X~‘.

According to the relations {P ,X03BD}=g 03BD we have
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and X"~ must commute with all the remaining variables. We find (*)

Making now use of the identities

we immediately see that

Equation (4 .10 b) can be readily integrated :

where /l s P) is an unknown function. Putting (4.11) into (4.10 a) we see that

and hence that we must still find four functions To this end we require
the final conditions

(*) For all vectors,

Vol. 40, n° 1-1984.
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One can show by direct calculation that

so that an acceptable solution is ~p ~‘(P) = 0.
We have then finally (making use of rels. (4 . 6 c))

The Shanmugadhasan transformation adapted to the second class
constraints is thus completed. We also write down its inverse :

The general theorems which have allowed us to write down the canonical
transformation adapted to the second class constraints, also guarantee
that it is possible to find (locally) an equivalent set of first class constraints
such that their Poisson brackets amongst themselves and with the second
class constraints vanish identically. This enables us to substitute the first
class constraint (3 .16 b) by a new one ~o with the previous properties. ;

Let us rewrite (3 .16 b) in terms of the new variables (4 .15) :

As first suggested in ref. [~0] we " expect that the new will not depend
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. 

on the variables Rk, Since the latter are canonical pairs this means

thus verifying the initial requirement. A possible choice of ~o is then

where we replace  Sk, by  Sk, wherever it appears in the expression
of U.
We can write

where 03A9kk’ is the symmetric tensor

which can be diagonalised by means of a matrix A :

The coefficients of A are

Defining new variables

and their canonically conjugated
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4Jo reduces to the simple form

where U is the potential function written in terms of the new canonical
variables.

V QUANTIZATION

To perform the quantization of this model we follow the prescriptions
of [38] ] and [40 ], according to which the prescription

is taken up in the complete phase space. The physical states If/&#x3E; are required
to satisfy the conditions

where

the /~k being real constants. The following commutation rules are verified

Now from equation (4.19) we have

and therefore no inconsistencies arise.
The solutions of (5.3) have the form

The dependence of the wave functions on the variables X/l, is deter-
mined by (5.2) and, of course, depend on the potential.
For a harmonic oscillator potential,
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where is the quadratic form

which is inverse of the one in (4 . 20). It is diagonalised by A -1 and the
harmonic potential adopts the simple form

Introducing the following operators

such that

eq. (5.2) can be written as

with
Therefore the mass spectrum in this case is

It is interesting to point out that for the case N = 2, the corresponding
wave functions (5 . 7) are those of Kim and Noz [41 ].

Let us now make some comments about the weak quantization performed
here with one first class constraint the mass shell constraint of the sys-
tem and N -1 non hermitian combination of second class constraints,
and those proposed by other authors [~2] ] [43] in which they quantize N
first class constraints the mass shell constraints of the individual particles.
The Leutwyler-Stern model [44] belongs to this class as shown in ref. [45 ].
Due to general theorems on function algebra, it is possible to extract from
a set of 2N -1 constraints one of them first class and the others second
class - a (maximal) subset of N constraints commuting among themselves.
So, the alternative quantization cited above can also be performed in
our model.

Vol. 40, n° 1-1984.
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To this end we extract from this model the corresponding N first class
constraints .

(5.15) are equivalent to

If we use the canonical transformation (4.15) and (4.23), (4.24), these
constraints can be written as

and therefore if we perform the quantization we obtain the following N
wave equations _.

We point out that the quantization performed with these variables is
equivalent to the old one due to the fact the canonical transformation
is a point transformation in the momenta.

If we use wave functions in momentum space

the solutions of eq. (5.18) are

where f(P, is a solution of (5.18 a), while the solutions of (5 . 2), (5.3)
in momentum space are : 

1

satisfies (5 . 2) and also (5 .18 a).
As shown in ref. [~6] ] it is possible to introduce a scalar product for

the wave functions (5 . 20) and (5.21) in a such a way that the corresponding
Hilbert spaces are isometric, therefore we must conclude that at quantum
level the two procedures are equivalent.
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APPENDIX A

We study in this appendix the equations of motion of a two-particle harmonic oscillator
as described by the Lagrangian function

in which, for the moment, we do not assume (Xi = a2 ; we only assume CXI + CX2 = 1. Defining
x"‘ = alxl + and r~‘ = x2 - xf, the equations of motion are easily obtained

d :£ 
__ .

where ~c(~.) = -In is the gauge function. We can choose it equal to zero and then take

= 1. This imposes the gauge constraint

to be added to the previous ones

It simplifies the equations of motion to

whose solutions are

If we impose the constraints (A . 3) and (A . 4), the constants in (A . 6) are seen to verify

Let us study the situation in the CM rest frame. In this frame a = 0, b~‘ = 0, so that
the equations of the trajectories and the constraints read -

We can now eliminate the parameter ~, in favour of the time for this reference frame,
i. e., x° = t. Thus we have

whence

and

It is apparent in these expressions the possibility of having tachyonic states of motion

unless ai = 0(2 = - as pointed out in section II.
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APPENDIX B

In this appendix we attempt to solve the problem of finding a Lagrangian function such
that it automatically yields the whole set of constraints (3 . 8) and (3.10). To this end let us
introduce N + 1 auxiliary variables (i = 1, ..., N) such that

We now construct a Hamiltonian function

(~o, ~k being the same constraints as before, and its associated equations of motion.

This system of equations enables us to write down expressions for in therms

of x, Sk and the auxiliary variables :

with

and

and Si = xi - x". Hence

Now the Lagrangian is

where He is defined by (B. 2). Upon substitution we find
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In order to eliminate the auxiliary variables we make use of their corresponding equa-
tions of motion which, since the velocities vo, vl are cyclic in (B . 6) are

This is equivalent to

where P’‘ is given by (B . 4 a). This is an unsolvable system in practice because we need to
solve in general an algebraic equation of N th degree. But from formal point of view the

Lagrangian (B . 6) is sufficient to study the dynamical properties of the system. Furthermore
it is sufficient to work with (2.3) plus (2.4).
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