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ABSTRACT. — The quantization of a priori hamiltonian predictive
systems is studied. It is applied to quantize the family of N-particle rela-
tivistic models presented in ref. 1. The relativistic two-particle oscillator
is studied in detail and finally our results are compared with others that
already appeared in the literature.

RESUME. — On étudie la quantification de systémes hamiltoniens pré-
prédictifs a priori. Comme application, on quantifie la famille de me-éles
relativistes a N particules présentés dans la référence 1. On étudie en détail
loscillateur relativiste a deux particules. Finalement on compare les
résultats obtenus avec d’autres parus précédemment.

1. INTRODUCTION

In an earlier paper [/] we presented a family of N-particle relativistic
systems in the framework of Predictive Relativistic Mechanics (PRM)
and we developed the classical aspects of such systems. We also studied
in detail the harmonic oscillator like interaction, and this was done for
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2 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

two reasons: on the one hand because the oscillator like N-particle rela-
tivistic systems are simple enough to be explicitly solved and, on the other
hand, because some articles have recently appeared [2] [3] [4] where
these models are used to give an account of phenomenological aspects of
the internal structure of bosons and hadrons.

The present work is an attempt to quantize such models. The quantiza-
tion of an N-particle relativistic system interacting at a distance (i. e. without
an intermediary field) is a subtle problem because in dealing with a mani-
festly covariant formalism a set of 8N coordinates is used (coordinates
and momenta are four-vectors) whereas the correct number of degrees of
freedom is 6N. In a naive quantization some variables appear which have
no physical meaning, for instance, the relative times. Treating these variables
as independent introduces time-like oscillations, which are responsible
for the undesired fact that the energy spectrum is not bounded from below
and presents an infinite degeneracy. In order to avoid such a bad behavior
these degrees of freedom are usually eliminated « ad hoc » [2] [3].

There are several other ways to eliminate the spurious degrees of freedom
introduced in dealing with a covariant formalism. In the constraint hamil-
tonian formalism the phase space is a 6N submanifold of TMY and the
quantization procedure starts from the canonical structure defined by
the Dirac bracket on the constraint manifold. The quantization procedure
has also been developed in the framework of the manifestly predictive for-
malism of PRM [6]. This procedure, which is not manifestly covariant but
is Poincaré invariant, does not introduce superfluous degrees of freedom
and deals with variables which can be measured in any inertial frame.

In the present paper we follow a different approach, based on the quan-
tization method introduced by Bel [7] and on the formalism developed
by L. Schwartz [8] which, in our opinion, is especially elegant and rigo-
rous. The « wave functions » will be elements of #/(M}), tempered distri-
butions on the « configuration space » spanned by the canonical coordi-
nates g/. The Hilbert space # of our system will be a subspace of &/(M})
on which the Complete Symmetry Group ¢ will be unitarily represented.

The Complete Symmetry Group is the direct product of the Poincaré
Group £ and an abelian N-parameter Lie Group .y associated to the
motions of the N particles. Therefore, 2 is also unitarily represented on J#;
hence, the quantization presented here is explicitly covariant and the
transformation properties are simple. Furthermore, our « wave functions »
will be eigenfunctions of the generators of &/ (the N hamiltonian operators),
which are Casimir operators. These N conditions yield, on the one hand
N —1 equations which eliminate the dependence on the relative times and,
on the other, the wave equation of the system.

In the special case of an harmonic oscillator like interaction we obtain
a mass spectrum for hadrons agreeing with results already known [/8]
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EXACTLY SOLVABLE MODEL IN P. R. M. ! QUANTIZATION. II 3

and we calculate explicitly the corresponding wave-functions. Finally,
in section 5, we compare our results with other relativistic harmonic
oscillator models that already appeared in the literature.

2. QUANTIZATION
OF A PREDICTIVE RELATIVISTIC HAMILTONIAN SYSTEM

The starting point of the quantization presented here is a particular
hamiltonian description of a given Poincaré invariant predictive sys-
tem (PIPS). This consists of [/]:

i) An adapted canonical coordinate system { (g%, p%); a, b=1 ...N;
wv=0,...,3}ie.:acoordinate system such that the elementary Poisson
brackets are:

{di.p0} =000, {diap}={pipl}=0 2.1
and the generating functions of the Poincaré group are
P, = ¢&,p8
W= Gl . } 2.2)
Juv = GauPv — 4avDy

ii) N scalar hamiltonian functions { H/(q,p), a =1, ..., N} satisfying
{H,, H, } =0, a#td 2.3

The differential systems associated to these hamiltonians generate
the evolution of each particle; i. e., for any f(g, p):

of

ot, -

where 1, is a scalar parameter on the world-line of particle (a). The para-
meter 7, is a well known function of the propertime o, [5] [9].
The hamiltonian functions are integrals of motion and we have [5]:
H, = Lm 2.5
o ==m; .
2
iii) The physical position coordinates x* are related to the adapted
canonical ones by the partial differential system:

{H,,xt} =0, Vd #a 2.6)

which has a unique solution, provided suitable Gauchy data are given.
A quantum description of the Poincaré invariant hamiltonian system
considered will consist of:

i) a Hilbert space (#, { | ) of tempered distributions i. e, # < ¥'(M})
and

{H., 1} 2.9
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4 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

ii) a unitAry representation of the Complete Symmetry Group [/0]
% of our system on #.

We need a « machinery » to assign an operator on J# to each function
F(qg, p) on the phase space TMY. For this purpose we shall use an immediate
generalization to distributions of the method proposed by Bel [7]. For a given
F(gp) we define the operator F: #/(M}) - &/(M})

Ve (M) A Yo e S (MY);

CEY, @) =y, L FHFWG D) 00)]> (2.7)
where ¢,) is the usual dual product between a continuous linear form
of y e #(M}) and a test function ¢ e (M) — #(Mj}) in the space of
the rapidly decreasing ¢ functions [8].

& and & are, respectively, the Fourier and the inverse Fourier trans-
forms:

— Quh)~ 2N f n(p)- exp (hi qf:p;’,> ()
F,x = (2nh) 2N fn(q) *€xp (— %qﬁ -p,‘1>x(q) (2.9)

where n(q) = dgqt A ... A dqf is the volume element in M}.
The expression on the right of eq. (2.7) must be understood as:

(R, @) = (2mh) 4N Jn(q)-n(p)-n(q')-e%“‘""“’ “F(g', D) o(q)

We call indicial functions those F(g, p) to which eq. (2.7) assigns a well
defined continuous linear operator F on & "(M3%). In Appendix A we give
the conditions under which F(g, p) is an indicial function. Indeed, we show
in this case that

h

This allows us to consider the part of any indicial function depending on p?
as tempered distribution. It is also easy to prove that any polinomial func-
tion of ¢* and p? is an indicial function.

We also prove in Appendix A that:

N a "
q"p" = q"‘(— i —> (2.10)

That is to say, the « correspondence rule » (2.7) assigns to the function g4

—i . i
F(g, p) = exp (— qﬁ])ﬁ)’ Fexp (g q‘.fp:‘;) 2.9

the operator « product by g* » and to p? the differential operator — ih— o
b

as it is usual in quantum mechanics. Moreover, eq. (2.7) supplies a well

Annales de I Institut Henri Poincaré - Physique théorique
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determined prescription to assign an operator to a product of ¢’s and p's:
« place all the g’s on the left and all the p’s on the right, then make the
above substitution ». This is a kind of « normal ordering ».

Eq. (2.7) defines a linear map 6 from the space X of all the indicial func-
tions onto £(&'(M}); #(M})) = ¢,

q

0:1 - @ }
Fg,p) —» 0(F) =

From (2.9) it is immediate to prove that: §(F,) = O(F,) iff F; = F, almost

everywhere. Therefore, we shall consider 0 as a linear injection of I into o,.

This will permit us to translate the algebraic structure of O, into X.
We can define the quantum product of two indicial functlons by [7]:

VF,Ge¥X, Fo-G=0"YF -G (2.12)

@2.11)

and the quantum bracket by
{F,G}qg=FoG -~ G-F =0"Y([F, G)) (2.13)
It is obvious that the main properties of the product and bracket in 0,

are also translated into properties of the quantum product and bracket in X.
Other properties that must be mentioned are the following:

oG
92°G =q;-G =Gogq; + ih

- 2.14.0)
op,,
oG
pﬁoG+ihaqﬂ:pZ-G=Gop,‘; (2.14.b)
ﬁlimFoGzF-G (2.15)
lim — (F,G s = {F, G} (2.16)

The last two identities only hold if F and G do not depend on the para-
meter #. The last one is very important because it relates the quantum
and Poisson brackets.

We shall say that the quantum bracket between two functions is exact iff:

{F.G oy = it {F,G} 2.17)

Let us now consider the Lie algebra spanned by the set of indicial func-
tions: Fy(q, p), ..., F(q, p) being the Poisson bracket the operation of
the algebra. Let us assume that the quantum bracket between any pair of
these functions is exact. Then, the Lie algebra spanned by the associated
operators Fy, ..., F is isomorphic to the above Lie algebra of functions.

It is our aim to represent the Complete Symmetry Group % on the
group of unitary operators on a Hilbert space (#, {|>). Therefore we

Vol. 40, n° 1-1984.



6 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

must assign a hermitian operator on # to each of the generating func-
tions P,, J,,, H,. The map 0 defined by (2.11) and (2.7) supplies a way
of doing this if, and only if, § preserves the commutation relation between
any pair of these generating functions P,, J,,, H,. In other words: if and
only if the quantum bracket of any two of them is exact. At this point
it must be emphasized that this condition is not fulfilled by all possible
hamiltonizations of the PIPS.

We say that a given hamiltonization is quantizable when the quantum
bracket of any two of the generating functions P,, J,,,, H, is exact.

Since P, and J,, have the simple expressions given in (2.2), it is imme-
diate to prove that their quantum brackets with any other function are
exact. Hence, taking (2.3) into account, a hamiltonization is quantizable
‘if and only if:

{H,,H, }os =0, Va # d (2.18)

The above relation allows us to represent the Complete Symmetry
Group ¢ on the space of operators on ¢’ (M}). A quantum description of
the PIPS requires besides a Hilbert space (#, { | > ) such that # = #'(M})
and that the generators of the representation act as hermitian operators
on #. This is so because we want the representation of ¢ to be unitary,
but may imply some restrictions on the Hilbert product (| .

3. THE MOMENTUM REPRESENTATION

In the last section we have defined the concept of the quantum des-
cription in terms of a Hilbert space of tempered distributions on test
functions of the coordinates g%. We shall call this the coordinate repre-
sentation. Sometimes it will be useful the so called momentum represen-
tation (i. e.: in terms of distributions on functions of the momenta p’).

The Fourier transform & defines an isomorfism of &/(M}) [11]:

(MY 5 (M)
Ao = Vg =Fy (3.1)
Vo(@)e SMY),  {F s (@) > =  dp» Fp® >

where the subscripts g or p indicate the representation we are dealing with.

The transform % admits an inverse, &, and both are continuous on
)
We can also define the operator associated to a given indicial function by:

r-206 } 3.2)
Flg,p) > F=%cFoF

Annales de I’ Institut Henri Poincaré - Physique théorique



EXACTLY SOLVABLE MODEL IN P. R. M. ! QUANTIZATION. II 7

Then, taking (2.7) into account, we have:
Vp(p)e SMY),  Vy,e ¥ (MJ):
CFops p(P) D = s ZHF(, )Fs0) > (3.3)

As in the coordinates representation, it can be deduced from (3.3)
a kind of « correspondence rule » given by:

~~ o\
q"p") = <ih 6_> v (3.4
P

4. APPLICATIONS TO SOME MODELS.
HARMONIC OSCILLATOR

a) In ref. [1], which will be referred hereafter as (I) we presented a family
of predictive hamiltonian models for N particle systems. The hamiltonian
functions were given by (I-3.16):

H, = «(Py,) — pP? — v[sAyi + Z (yAyA/):] + V(3. Zo)  (4.1)
A<A’

where a, B, y are real parameters and the variables z4 and y® are respectively
the relative canonical coordinates and their conjugated momenta:

1
A=di—d, W=gPR-p, m=-an @42
The indices A, B, ... run from 2 through N and the sum convention
holds for all the indices if the contrary is not explicitely especified.
It is meant by a* the component of a* which is orthogonal to P,:

N 1
@t =ma', = — PP, 4.3)

For more notation details the reader is referred to (I).

Some questions immediately arise. Are these hamiltonian models
quantizable ? Does this imply any restriction on the potential function
V(7s, Zc)? As it has been established before the necessary and sufficient
condition of quantizability is:

{HoHylog =0, Vd' #a (2.18)
In our particular case we have:
{Ha’ Ha’ }QB =a { (Pya) - (Pya’)a v }QB (44)

Vol. 40, n° 1-1984.



8 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

The quantum bracket on the right of (4.4) is a linear combination of
{(Pya), V jqs, A =2 ..., N, which after a short calculation yields:
ov o*vV

(P Vi = — i o i Y e BV
Al QB 02& A aX” aXﬂaZAu .

and, since in the case under consideration V only depends on 24, ¥B, the
right hand side of (4.5) obviously vanishes. Therefore, the hamiltonian
predictive model given by (4. 1) is quantizable irrespectively of what poten-
tial function V(¥g, Z¢) is taken.

However we shall not consider here the representation of ¥ on the
whole #/(M}) but in some invariant subspaces of it. These will be the
proper subspaces of the operators: P2, W2 and H,, a = 1, ..., N (respec-
tively: the squares of the total momentum and the Pauli-Lubansky vector,
and the hamiltonians). Each subspace will be labeled by N + 2 non nega-
tive numbers S# (M, L; m,, ..., my) and it will consist of all the states of
the system with definite total mass M, total intrinsic angular momentum L
and individual masses for the constituent particles (m,) (*):

Ve #AM,L;my, ..., my)

PPHy = — M%y (4.6a)

W, WHy = h?L(L + 1)y (4.6b)
- 1

H,,zllzim,fz,b, a=1,...,N 4.6¢)

It is clear that J#(M, L; m,, ..., my) so defined is not empty because the
operators on the right commute mutually.
We must point out, however, that eq. (4.6) do not define

‘#(Ma L’ my, .. -»mN)

because some summability conditions must be added. This will be done

below.
b) From now on we shall specifically study the harmonic oscillator
model presented in (I) given by the potential function:

V=— %k Z (Ga — 4u)* = — %k[(N — D&z} - Z (Zg- EB)] 4.7)
a<a’ B#B’

In this case the simplest framework is the momentum representation.

(*) The concept of « individual mass » has no physical meaning if the system is not
separable but we keep this denomination for obvious reasons.

Annales de I'Institut Henri Poincaré - Physique théorique



EXACTLY SOLVABLE MODEL IN P. R. M. : QUANTIZATION. I 9

Otherwise, since P? appears dividing in V, we would be forced to deal
with integrodifferential equations and, hence, non-local operators. Using
the « correspondence rule » (3.4) we can write equations (4.6) as:

P>+ M?*)y =0 4.7,0)

0 A ~B A~ i
[2.)/;1 a A (y:y§_(yA yB)nuv)'m
{ «(Py,) — pP? — v[s VA + Z (VA" yar )]

w2k 02 02 1
T (N1t 2 |- om py=0 @7,
2 [( ) dyy-0yy Zﬁyﬁ'ay‘v’] T }w #.7.
B#B’

where ¥ is a tempered distribution on the momenta space.
After a short calculation we obtain that the N equations (4.7c) are
equivalent to:

—L(L+ 1)].// =0 (4.7,b)

(Pya — B =0, A=2...N 4.8a)

Y kN 1 1
[ﬂP2+§lFAB(y V)= —— (" )Bn ‘”'ayAa B+—sﬂm§]w=0 (4.8b)
where:

1
Ba= ﬁ (NmA - Sbmg)

and [ is a (N — 1) x (N — 1) symmetric matrix given by:
Tan =2, Taa =1, AP#A=2 .. N 4.9q)
and ™! its inverse:

N-1 1
[ R (S 4.9b
(T N T N (4.9b)

Since I is symmetric, there exists an (N — 1) x (N — 1) matrix D dia-
gonalizing it:
DT T-D=1 (DEDETAp = OcF) 4.10)
(The (N — 1) x (N — 1) matrices D and D! are given in Appendix B).
We now define the following change of variables:
—AE _P2—1/2P A
= (PR @11
ut = (D~ gy e“(P)

where €#(P) are the polarization vectors associated to P, (see Appendix B).

Vol. 40, n° 1-1984.



10 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

Then introducing those variables into (4.7) and (4.8) and using (4.10)
and Appendix B, we obtain:

[% &m+ P2 — g[rAByAyM %BAaA‘_ﬁA— PPN AV, ﬁ,\]w:o 4.12a)
(A (= P2 — B =0 (4.12b)

P2+ M)y =0 (4.12¢)

[(— it x V)* — R2L(L + )]y =0 (4.124)

. 0 - .
where V) = A and a- b = ab;- 6.

1

The general solution of eq. (4. 12) can be written as:

N
Y = @ 5(P? + M?)-H(P?)- Hé(?”‘ — BA/M) (4.13)
A=2
where ® € &/(R3V) acts on functions of (P, 72, . . ., %) and it is a solution of:
h2kN - | N
(— 3AV§+§yeAuA~ uA—C>q,’>=0 (4.144)
(7 x V) + L(L + 1))¢p = 0 (4.14b)
. -1, Y
with: (=ox? m2 + fM? + N Z (m2 — mZ)? (4.15)

a<a’

The distribution O(P°) in (4.13) ensures that only positive energy solu-
tions are considered.

Since eq. (4.14a) is separable, we can apply the theorem (VI-B-2) of
ref. [11] to conclude that the general solution can be written as the series:

N 3
jel A=2 i=1

(summable in the sense of &’) where the functions f{? are solutions of the
one-dimensional quantum oscillator equation.

Since ¢ is a temperated distribution, f{(u;') must be slowly increasing
functions. This implies that the range of values which can take on are:

{n=nh ykN-[n+;(N——l)], neN (4.16)

Annales de I Institut Henri Poincaré - Physique théorique



' EXACTLY SOLVABLE MODEL IN P. R. M. : QUANTIZATION. II 11

and hence the mass spectrum is given by:

1 [e*m? 1 £*m? 2 By
2_ L (& L (Em -—E 22y (4.1
M, 2ﬁ<2N+C">+2/3\/<2N +C"> N /e (4:17)

where the + sign has been chosen is the square root in order to keep M2 > 0.
In the particular case m; = ... = my we have that M3 depends linearly on n.
This feature of our model agrees with a well known result for hadrons [/8].

Equation (4.14b) is the total angular momentum equation for the N—1
uncoupled harmonic oscillators (non-relativistic). Hence L can only take
on positive integer values whose range %, y depends on n and N.

The explicit expression for a complete set of solutions of (4.14) is in
general complicated. We give these expressions in Appendix C for the
simplest cases where N = 2 or N = 3 and the lowest masses n =0, 1, 2
and angular momenta L =0,1, ...

¢) The Hilbert space S#(M,, L;my, ..., my).

As we have pointed out above, some summability conditions must be
added to eq. (4.6) in order to make possible a Hilbertian structure on
HM,, L; my, ..., my). We shall require the distribution ¢ appearing
on (4.13) to be square summable with respect to the medsure:

d3Nﬂn

N
d3P I_[
= - .| [|au 4.18)
2 2
PNIVERS 2 g

We shall write: ®e Z2(R®), i. e,
jd3N,u,,~|CI>(l3,122,...,ﬁN)| <+

Notice that d*Ny, is Poincaré invariant. Indeed, the first part
1 = -
E(M,f + P?)712g3p
N
is Poincaré invariant and also the second ”d%i“ as can be inferred

from the definition (4.11). A=2

In fact the summability with respect to the variables %2, . . ., %N is implied
by the fact that @ is a slowly increasing solution of the harmonic oscillator
equation (4.14,a).

Summarily, the space #(M,, L; m,,...,my) is defined by:

HM,,L;my, ... .my)= {(I)(f’, u®)- §(P2+M?2) - 6(P°) - H (7 —p*M,)/

A=2

®e #2(R*) and @ is a solution of (4.14) }

Vol. 40, n° 1-1984.



12 V. IRANZO, J. LLOSA, F. MARQUES AND A. MOLINA

It is obvious that the sesquilinear form:
< lpl I lpZ >n = Jd3N n' 45:(13: TJB) : ¢2(f)a 7'4B)
N
Yi = ©(P, 78)- 0(P°) - (P> + M) - H (Y =pAM,), i=1,2 (4.19)
A=2

defines a Hilbertian structure on #(M,, L; my, ..., my).
Also, since the measure d*Ny, does not depend on L but only on n,

we can consider the space: e
Hnsmy, . om) = @) # M Limy, .. my)
LeZ, N N
Hmsmy, ..., my)= {d)(P, u®) - 6(P°) - 6(P>+ M7) - H &(y* = BA/M,)/

A=2

® e Z; (R*™) and @ is a solution of (4.14,b) } .

This is the space of quantum states of the cluster of N particles with total
mass M,, and unspecified intrinsic angular momentum, and it admits the
Hilbertian structure defined by (4.19).

Finally, we can consider the space of all the quantum states with any mass
and angular momentum:

H(my, ...,my) = @%(n;ml,...,mN) (4.20)
n=0

However, the Hilbert product must be now specified:

<¢1I¢2>EZ<¢‘1”’I¢‘2'">,, 4.21)
n=0

with: Y= Zl/lﬁ"); i=12 yPeHmm ... my).

n=0

5. COMPARISON WITH OTHER MODELS
AND CONCLUSIONS

There is much literature about relativistic models of particles inter-
acting at a distance and this model is just but one among them, which
has been derived in the framework of Predictive Relativistic Mechanics.
We shall now compare the results obtained in the foregoing sections with

Annales de I Institut Henri Poincaré - Physique théorique



EXACTLY SOLVABLE MODEL IN P. R. M. : QUANTIZATION. II 13

those given by some other models of two [3] [12] [13] or three [2] particles,
already published.

Generally, requiring the manifest covariance of any model, implies at
the classical level to deal with the 8N dimensional phase space TM}. Hence,
the corresponding quantum picture must be built on a Hilbert space of
distributions on MY — i.e.:¢(p}, . . ., P})-

However, the advantage of dealing with a manifestly covariant forma-
lism — the compactness of equations, the simplicity of the action of the
Poincaré group on MY, etc. — has the drawback of introducing 2N — 1
extravariables at the classical level whose physical meaning is not clear
for all of them. Indeed, whereas N of these can be easily related to the
individual mass of each particle [/4], the remaining N — 1 are related
to something as vague as the so called « relative times ». (How to « measure »
them ?).

At the manifestly covariant quantum level only (N — 1) extravariables
are necessary — the « relative times » or their conjugated momenta, depen-
ding on whether we are dealing with the coordinates or with the momenta
representation, respectively — and they must be eliminated in order
to avoid unpleasant features in the model. Indeed, at least since the cova-
riant harmonic oscillator (CHO) proposed by Yukawa [15], it is well
known that if the spurious degrees of freedom are not eliminated, then
the energy spectrum is not bounded from below. This is due to the pre-
sence of the « ghost states » which are actually associated to the extra-
variables and which, in the Yukawa’s CHO, correspond to « time-like »
oscillations. These oscillations allow to increase negatively the energy
at will.

Yukawa’s CHO was defined by Klein-Gordon type equations, exhibiting
a harmonic oscillator like potential, plus a supplementary condition which
was imposed in order to forbid the « time-like » oscillations.

In the same direction line, mention must be made of the CHO models
proposed by Kim and Noz [3] and by Feynman and coworkers [2] for
N = 2 and N = 2 or 3 particles, respectively. In those models the spurious
degrees of freedom are forbidden by imposing the necessary (N — 1)
subsidiary conditions, obtained by means of plausibility arguments.

Other methods to eliminate the extravariables are those proposed by
the different constraint hamiltonian formalisms [/4]. One example where
it is easy to see how the Dirac formalism [/6] can be applied is the CHO
of Dominici and coworkers [/2]. From Dirac’s standpoint, the classical
phase space in this two particle model is not TM3 but a 13-submanifold I'
of it, defined by three constraints: two of them are second class and the
remaining one is first class. The 13 degrees of freedom on I can be classified
as follows; 6 canonical coordinates, 5 conjugated momenta and one more
playing the role of « center-of-mass time ». The corresponding quantum
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picture is built on a space of functions on 6 coordinates plus the « center-of
-mass time », defined by a Klein Gordon type equation, where the Hamil-
tonian is deduced from the first class constraint.

A comparative study of the Rohrlich and Todorov formalisms [/4]
will be handled in a forthcoming paper.

In the model presented here — and in Droz-Vincent’s as well [/3] —
we deal with the phase space TMY, as it is usual in the manifestly covariant
formalism of P. R. M., and we do not introduce any a priori constraints.
In quantizing the model, the requirement of having unitary representations
of the Complete Grup of Symmetry 4 on the Hilbert space # implies
inmediately the N equations (4.7c) which are equivalent to the Klein-
Gordon type equation (4.14a) plus (N — 1) more (4.14b) playing the
same role as the subsidiary conditions in the above mentioned models.

So, in the case of 2 particles (N = 2), equal masses m, = m, = m and
parameters o = y = 1/2, f = 1/8, we obtain from (4. 17) the mass spectrum:

MZ = 4m? + dho(n + 3/2) (5.1
where: w= 2ﬁ ; (5.2)

The Hilbert space of states with well defined total mass M, and total
spin s is given by

H,

n

,S = e%(Mm S;mlsz:m)
= {®(P, W)+ 6(P> + M2)- 6(P%) - 6(7)/®e L2 (R%)} (5.3)
with the Hilbert product:

< l//1 | ¢2 >n= J‘d6.unq)’1k(l_57 7’2) . (DZ(I_:;’ _d) 5 lplﬁ lpZ € e}iﬂn,s (5 . 3,)

where ®(P, 7)) is a solution of:

. 1., h 3
[— hzkv,f+zu2—7w(n+§>]q>=o (5.4q)
(% x V)2 +s(s+ 1)]J@=0 (5.4b)
and d®u, is the measure:
1 - -
dpy = 5 (B + M)"12F - 4% (5.5)

The Hilbert space of states with definite mass M, is given by:

#, = @ o,

whose elements are of the form:
¥ = O(P, 1) (P> + M2)- 0(P°)5(5)
®(P, 7i) being a solution of (5.4a).
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Since the measure of #,, does not depen on s, the same d°u, defines
the Hilbert product on J%,.

Notice that the variable y is completely spurious and does not play
any role in this quantum picture. It is like in Dirac’s constraint formalism
as we have commented above.

We have to point out also that in this particular case (N = 2) our model
recovers the main features of Droz-Vincent’s one [/3]. It must be empha-
sized, however that the quantum model of Droz-Vincent is not completely
defined. Indeed, although he obtains a mass spectrum and gives the space
of wave functions, he does not take care of defining a Hilbert structure on it.
This leads Droz-Vincent [17] and also other authors [/2] not to be aware
of the fact that this predictive model reproduces the main features of the
CHO of Kim and Noz. Indeed, although the space of wave functions here
obtained 3, and the one given by Kim and Noz [3] #XN are different,
so are the Hilbert products, but in such a way that there is an isometric
mapping which relates #, with # N, for each ne N

Hy = A
(P, 1) 3(P>+M2)(P°)-6(7) — OB, B)-3(P*+M2)- (P°)-exp (— y?2hik)

Hence, both models are quite equivalent from the quantum point of view.

Finally we want to emphasize the main points in which the quantization
method presented here is based. These ideas have been developed by
L. Schwartz [8] in the case of free particles:

i) We are interested in the irreducible unitary representations of the
symmetry group of our system (in our case the complete symmetry group:
Y =P x dy)

ii) On a Hilbert space of tempered distributions # < '(M}).

The requirement (i) implies that the 10 + N generators of the infini-
tesimal transformations of ¢ are hermitian operators on # and therefore
they are associated to 10 + N observables. Furthermore, we want to stress
that (ii) not only implies choosing a subspace # < &/(M}), but also
a Hilbertian structure on it, which will allow to calculate expectation
values of observables. Consequently, to compare two quantum models
requires to consider together the wave function space and the Hilbert
product.

Some problems are still open: the definition of the operators x* (indivi-
dual position of each particle), a probabilistic interpretation of the model,
etc. After that we shall be able to apply these results to compute form
factors, anomalous magnetic momenta, etc. of hadrons in the framework
of a quark model.
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APPENDIX A

1) Conditions on the function F(g, p) in order that F be a well defined continuous linear
operator on #(M}), i. e.: to be an indicial function. It is easy to see from the definition (2.7)
that:

i) F(g,p)- o(q)e S(MY), Vpe M}, Voe #(M}) < F(q,p) is a slowly increasing
function of the variables gq.

ii) #,(F(q,p) ¢(q) € F(M}), Voe (M) < F(q,p) is a slowly increasing func-
tion on the variables p.

Both conditions are fulfilled when F(q, p) is a polynomial.

2) Proof of equation (2.9):
Let F be the continuous linear operator on M%) associated to the indicial func-

i
tion F(q, p) and consider the slowly increasing functions exp <i —qh- p;',), which are also
tempered distributions #(M}). We then have: h

i i
exp <— 5 q,‘:p,‘1> Fexp <% q’.fp,’i) € FyMY)
Using the definition (2.7) and some properties of tempered distributions we can write:

Py iq.‘.‘p,‘ — _iq'ﬁpﬁ
,0(q)> =<, F[F,[F(q,p)e " ‘<p(q’)]]>

i

i i
—yErh L i .

(e Fe

= 2nh)>N "N — p), Z,[F(d, p’)e_;“ pulﬂ(q’)] > =< F(q, p) 9(q) >

3) Proof of equation (2.10):

TPV 00> = g T Fd™ P 0(@) } > =
= (W Zy D= 10" F o } > = (s (10T, { (— thd,"Fpp } > =
= (= ih6 Wy "FAFp0)> = < q"(— 1h,)Wyr 04 >
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APPENDIX B

1) Diagonalization of I'.
The characteristic and minimum polinomials of the matrix I" are, respectively:
det (T — A1) = (N — A}(1 — HYN~2
r-N-7))(r-1)=0
Hence, T can be diagonalized and we can find a basié of N — 1 eigenvectors: one for
the eigenvalue N and the remaining (N — 2) corresponding to the eigenvalue 1.

Due to this degeneracy the matrix equation DT I - D = 1 admits a great many of solu-
tions D and a particular one is given by:

Dy, = N2 (N — 1)~ 12 , A=2...,N
B-1)"1"2-B-2"12, A<B
Dag=<{ —(B—1)""B-2", A=B
0 , A>B, B=3...,N

2) Polarization vectors: R
In the center-of-mass frame P¥ = (M, 0,0, 0) with M = (— P?)"/2 we take three inde-

pendent space-like fourvectors s"‘(lo’) which, together with P forman orthogonal basis of M :
&(P) = (0, 8Y)
In any other reference frame the polarization vectors are defined b): the transforms
of these vectors under the boost L%P) which brings (M, 0, 0, 0) into (P°, P):
e(P) = Li(P) - &"(P)
Also, ¢(P), i = 1, 2, 3 and P* form an orthogonal basis of M,. Some interesting pro-
perties of the polarization vectors are the following:
e*P)P, =0; e¥(P) - &j(P) = oY
pP“p*

eH(Pei(P) = n*” = 1" — P2

1 : ‘ N
o S £B)S(P) - H(P) = — e
&4AP) = DY(A, P)AL™(P)

where A%e %% and Df is the Wigner rotation associated to (A, P).
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APPENDIX C

The equations (4.14) have the same form as the wave equation of (N — 1) uncoupled
quantum harmonic oscillators. Using the separability of this equation we can write:

(D(EZ’ ey _.N) = ﬂ (I)A(uA, OA’ (PA) (C 1)

A=2
where (ua, 04, @,) are the spherical coordinates of uA.
Then, substituting this in (4.14), it yields:
1 - 1
('— Cm\ - ihszVK + '2"))( “A)z)(DA(“A’ oA’ (pA) =0

with: Al =0 E'mpa=n

The solutions of this last equation are the classical solutions of the isotropic three-dimen-
sional harmonic oscillator:

@i aualtia Oa, 9a) = Cour,  Roura(tia) - YEXOa, @4) (C.2)

, " 20T [(n + L + 3)2]
p- = T CnL =
h2k (n —-L
2

)! T2(L + 3/2)

- L 3 2p2
R, (r) = rL-M(_ n > L +5’ pzr2>.exp [—p—zt-] (C.3)

where M(— n, m, x) are the Kummer functions of integer index [20].
n,=20,1,2,...

La=mns,na —2,n5 —4,...,n5 — 2[ny/2]
pa=—Lo —La+1,.., Ly =1L,

and [«] means the integral part of .
The total angular momentum operator is:
Ll = — iheM(uy A Vy) =& (P)- W*
We want our functions ®(#?, ..., ™) to be eigenfunctions of L2 = W2 and L. Since
®,,1.uaMa, 04, pa) are eigenfunctions of (i, A V,)? and (ix A V)3 (A =2,...,N),

we must compose the N — 1 angular momenta L, to obtain the total angular momentum L
and the corresponding third component p.

a) Wave functions for N = 2.

In this case only one function of type (C.2) is involved: ®,;,(#%) and no more quantum
numbers must be considered.
The quantum number L runs through the range of values:

Lpy = {n,n—Z,n—4,...,n—2[;}}; [g]+l values of L for each n.
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The radial part of the wave functions corresponding to the few first quantum numbers are:

p2r?
Roo(r) = exp <_ —2’>, Ry () = rRoo(r)
Ry,(r) = r*Ro(r) P Rao(r) = (1 - g pzrz) "Roo(r)

b) Wave functions for N = 3.
In this case two functions of type (C.2) are necessary and, since we are looking for eigen-

functions of L2 and L5, we have to couple them using the Clebsch-Gordan coefficients:

(Dn.L.u(nz,Lz,Lg,(az’ ;4'3) = E C(L27 L3a La Has “53 H) : (Dnszuz( ;4’2) - (Dn—nng,ug( Z23)

H2,13
It is easily seen that:

Lz = {n,n - 1L,n—2,...,n —2[%]}; 2[2] + 1 values of L for each n.

But there also appear the internal quantum numbers (n,, L, L) which account for how
the two oscillators are coupled. Therefore, there is a certain degeneracy which for the few
first values of (n, L) is given in the following table:

n L n, L, Ls Degeneracy
0 0 0 0 0 1
1 1 0 1 2
1 1 0
2 2 2 0 3
1 1 1
0 2
2 1 1 1 1 1
2 0 2 0 3
1 1 1
0
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