The canonical structure of generalized non-linear sigma models in constrained hamiltonian formalism
Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 2, pp. 193-209.
@article{AIHPA_1983__39_2_193_0,
     author = {Maharana, J.},
     title = {The canonical structure of generalized non-linear sigma models in constrained hamiltonian formalism},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {193--209},
     publisher = {Gauthier-Villars},
     volume = {39},
     number = {2},
     year = {1983},
     mrnumber = {722685},
     zbl = {0518.58021},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1983__39_2_193_0/}
}
TY  - JOUR
AU  - Maharana, J.
TI  - The canonical structure of generalized non-linear sigma models in constrained hamiltonian formalism
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1983
SP  - 193
EP  - 209
VL  - 39
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1983__39_2_193_0/
LA  - en
ID  - AIHPA_1983__39_2_193_0
ER  - 
%0 Journal Article
%A Maharana, J.
%T The canonical structure of generalized non-linear sigma models in constrained hamiltonian formalism
%J Annales de l'I.H.P. Physique théorique
%D 1983
%P 193-209
%V 39
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1983__39_2_193_0/
%G en
%F AIHPA_1983__39_2_193_0
Maharana, J. The canonical structure of generalized non-linear sigma models in constrained hamiltonian formalism. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 2, pp. 193-209. http://www.numdam.org/item/AIHPA_1983__39_2_193_0/

[1] K. Pohlmeyer, Commun. Math. Phys., t. 46, 1976, p. 206. | MR | Zbl

A.A. Belavin and A.M. Polyakov, JEPT Lett., t. 22, 1975, p. 245.

H. Eichenherr, Nucl. Phys., t. B 146, 1978, p. 215, and t. B 155, 1979, p. 544.

[2] M. Lüscher and K. Pohlmeyer, Nucl. Phys., t. B 137, 1978, p. 46. | MR

E. Brézin, C. Itzykson, J. Zinn-Justin and J.B. Zubber, Phys. Lett., t. 82 B, 1979, p. 442.

H.J. De Vega, Phys. Lett., t. 87 B, 1979, p. 233.

A.T. Ogielski, Phys. Rev., t. D 21, 1980, p. 406. | MR

E. Corrigan and C.K. Zachos, Phys. Lett., t. 88 B, 1979, p. 273.

T.L. Curtright and C.K. Zachos, Phys. Rev., t. D 21, 1980, p. 3462. | MR

[3] A.M. Polyakov, Phys. Lett., t. 82 B, 1979, p. 247. Nucl. Phys., t. B 164, 1980, p. 1971.

[4] L.L. Chau Wang, Talk presented at International School of Subnuclear Physics, Erice, 1980.

L.L. Chau, M.-L. Ge, Y.-S. Wu, Phys. Rev., t. D 25, 1982, p. 1086, and references therein.

[5] L. Dolan, Phys. Rev. Lett., t. 47, 1981, p. 1371, and Phys. Lett., t. 113 B, 1982, p. 387. | MR

B. Hou, M. Ge and Y. Wu, Phys. Rev., t. D 24, 1980, p. 2238.

[6] P.A.M. Dirac, Can. J. Math., t. 2, 1950, p. 129. | MR | Zbl

P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York, 1969.

An excellent introduction to Dirac formalism can be found in E.C.G. Sudarshan and N. Mukunda, Classical dynamics : a modern perspective, Wiley-Interscience, New York, 1974. | Zbl

A.J. Hanson, T. Regge and C. Teitelboim, Constraint Hamiltonian system, Accademia Nazionale dei Lincei, Rome, 1976.

L.D. Faddeev, Theor. Math. Phys., t. 1, 1970, p. 1.

For application to gauge theories, see R. Marnelius, Introduction to the quantization of general gauge theories, Göteborg preprint, 1981.

[7] G.A. Vilkovisky, Phys. Lett., t. 55 B, 1975, p. 224. | Zbl

I.A. Balatin and G.A. Vilkovisky, Phys. Lett., t. 69 B, 1977, p. 309.

C. Teitelboim, Phys. Rev. Lett., t. 38, 1977, p. 1106. | MR

E.S. Fradkin and T.E. Fradkina, Phys. Lett., t. 72 B, 1978, p. 343.

E.S. Fradkin and M.A. Vasiliev, Phys. Lett., t. 72 B, 1978, p. 70. | Zbl

R. Marnelius, Phys. Lett., t. 99 B, 1981, p. 467, and op. cit. in Ref. 6. | MR

P. Senjavonic, Ann. Phys., t. 100, 1976, p. 227.

[8] H. Eichenherr and M. Forger, Nucl. Phys., t. B 156, 1979, p. 381. | MR

E. Brézin, S. Hikami and J. Zinn Justin, Nucl. Phys., t. B 165, 1980, p. 528.

M. Dubois-Violette and Y. Georgelin, Phys. Lett., t. 82 B, 1979, p. 251.

A.J. Mcfarlane, Phys. Lett., t. 82 B, 1979, p. 239.

R.D. Pisarski, Phys. Rev., t. D 20, 1979, p. 3358.

[9] E. Brézin et al., op. cit. in Ref. 8.

[10] Application of Hamiltonian formalism to the CPn-1 model can be found in H.E. Haber, J. Hincliff and E. Ravinovici, Nucl. Phys., t. B 172, 1980, p. 458. Constraint formalism has been applied to the CPn-1 model by E. Gozzi and A. Guha, Canonical structure of the CPn-12 model in some non-covariant gauges, Stony Brook preprint, 1981.

[11] N.K. Falk and A.C. Hirshfeld, Dortmund preprint DO-TH 82/05, and references therein.

[12] R. Marnelius op. cit. in Refs. 6 and 7.

V.N. Popov, preprint CERN TH. 2424, December 1977 (unpublished).

[13] M. Lüscher, Nucl. Phys., t. B 135, 1978, p. 1.

[14] Y.Y. Goldschmidt and E. Witten, Phys. Lett., t. 91 B, 1980, p. 392. | MR

E. Abdella, M.C.B. Abdella and M. Gomes, Phys. Rev., t. D 23, 1981, p. 1800.

[15] A.A. Slavnov, Saclay preprint DPh, 1978, p. 78-48, (unpublished).

[16] G. Duerkson, Phys. Rev., t. D 24, 1981, p. 926.

[17] For Dirac bracket structure of supersymmetric CPn-1 model, see S. Rouhani, Nucl. Phys., t. B 169, 1980, p. 430.