Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions
Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 1, pp. 1-27.
@article{AIHPA_1983__39_1_1_0,
     author = {Eder, E.},
     title = {Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {1--27},
     publisher = {Gauthier-Villars},
     volume = {39},
     number = {1},
     year = {1983},
     mrnumber = {715129},
     zbl = {0516.34066},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1983__39_1_1_0/}
}
TY  - JOUR
AU  - Eder, E.
TI  - Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1983
SP  - 1
EP  - 27
VL  - 39
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1983__39_1_1_0/
LA  - en
ID  - AIHPA_1983__39_1_1_0
ER  - 
%0 Journal Article
%A Eder, E.
%T Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions
%J Annales de l'I.H.P. Physique théorique
%D 1983
%P 1-27
%V 39
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1983__39_1_1_0/
%G en
%F AIHPA_1983__39_1_1_0
Eder, E. Existence, uniqueness and iterative construction of motions of charged particles with retarded interactions. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 1, pp. 1-27. http://www.numdam.org/item/AIHPA_1983__39_1_1_0/

[1] Deh-phone K. Hsing, Existence and uniqueness theorem for the one-dimensional backwards two-body problem of electrodynamics, Phys. Rev. D, t. 16, n° 4, 1977. | MR

[2] R.D. Driver, Can the future influence the present? Phys. Rev. D, t. 19, n° 4, 1979. | MR

[3] R. Flume, Ein Existenzbeweis für Lösungen des klassischen Zweielektronenproblems, Commun. math. Phys., t. 20, 1971, p. 111-122. | MR

[4] T.M. Flett, Differential analysis, Cambridge University Press, 1980. | MR