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Section A :

Physique ’ théorique. ’

ABSTRACT. - By using singular surface theory, it has been shown
that in order to find the vorticity jump across a special relativistic magneto-
hydrodynamic shock of arbitrary shape propagating in a uniform, perfect,
infinitely conducting fluid, it is necessary to use an equation of state behind
the shock together with the equation of continuity. A general relationship
between the jumps in vorticity and electric current vectors, and, in par-
ticular the one between the normal components of these have been obtained.

RESUME. - En utilisant la theorie des surfaces singulieres, on montre
que, pour trouver la discontinuite de vorticite, en magnetohydrodynamique
relativiste, a la traversée d’un choc de forme arbitraire se propageant dans
un fluide parfait uniforme de conductivite infinie, il est nécessaire d’uti-
liser une equation d’etat en arriere du choc en meme temps que l’équation
de continuite. On obtient une relation générale entre les discontinuites
de la vorticite et du vecteur courant electrique, et en particulier entre leurs
composantes normales.

1. INTRODUCTION

The study of shock wave propagation in relativistic hydrodynamics
and magnetohydrodynamics indicates applications in several contexts
of astrophysics [1 ]- [5 ]. Singular surface theory and ray theory provide
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useful and powerful tools in the study of propagating shocks and weak
discontinuities [6 ]- [12 ].
Mason [13 ] studied the behaviour of vorticity in a perfect, relativistic

fluid undergoing gravitational collapse. In classical magnetohydrodyna-
mics Kanwal [7~] has shown that it is necessary to use energy equation
to find the vorticity jump across a shock, and that electric current is also
generated behind the shock. In this paper, it is shown that it is necessary
to use an equation of state together with the equation of mass conserva-
tion to find the jumps in vorticity and electric current across a special
relativistic magnetohydrodynamic shock propagating into a constant

state ahead.

2. SHOCK CONDITIONS

A shock wave, considered as a propagating, timelike, singular hyper-
surface E across which at least some of the field variables describing the
fluid motion are discontinuous, may be represented parametrically by

where M" (Greek indices assume the values 0, 1, 2) are coor-
dinates on X and xA (Latin capital indices range over 0, 1, 2, 3) are the coor-
dinates referred to the special relativity metric hAB=diag (c2, -1, -1, -1).
NA, aaa and baa denote, respectively, the unit space-like normal vector
(NANA = - 1), components of the first and second fundamental tensors,
of L. We note the following formulae [15 ].

In (2 .1) and in what follows comma when followed by a Greek index denotes
covariant derivative with respect to aa~ and when followed by a Latin
index denotes partial differentiation in x. The vectors are tangent
to X. Usual summation convention has been followed throughout.
We further note the compatibility conditions, derived by using Hada-

mard’s Lemma, which must be satisfied across 03A3 by the partial derivatives
of the field variables [10 ]. For the first order partial derivatives, these are

where " [F] = F1, the subscript 1(2) on F denoting £ the value " of F just
ahead (behind) 03A3 and 03BBN = [F’A]NA denotes the jump in the normal
derivative. The su.f’fix N is not a tensor index; it is reserved to denote contrac-
tion with NA, of a , vector under consideration.
The fluid o energy-momentum tensor TAB 

~ is given by
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where VA - = p/,u, and p, p, and  are, respectively, the
proper mass density, pressure, time-like unit velocity 4-vector, the magnetic
permeability (assumed constant throughout) and the index of (he fluid
defined by  = 1 + (e + = p) being the specific internal
energy. The skew-symmetric electromagnetic field tensor GAB is given by

where HD is the space-like magnetic field vector.
It follows from an analysis of the shock conditions [8 that the vector

yA - VNHA) and the scalars

(where - H 12 = HAHA), are all invariant across the shock.
Denoting and [p ], respectively, by 03BBA and 0394, we write the shock

condition on energy-momentum tensor as

noting that = where the « sheet-current density »
vector B is defined by [16 ]

By eliminating HD from (2.4) in favour of YD and then by using (2.5)
and (2.6) one obtains

where a = 1/r - We assume that a1 1 is nonzero and is distinct
from a2. Consequently (x~ ~ 0. It then follows from (2.6) and (2.7) that

where k2 = | H p - M2K is strictly positive for nonzero magnetic field
and hence JB is space-like. Further JB is orthogonal to YB and VB (on either
side of the shock). From the definitions of M and a we have

By contracting (2 . 5) with NA and then by using (2. 8) and (2. 9) one obtains
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The Hugoniot equation [eq. (53 . 4) in [8]] ] written as

where 2 = 1 + M2/p2, determines [,u ], and, therefore, A, JB and //B
respectively, from (2.10), (2.7) and (2.5), in terms of the state ahead and
strength, defined by [p]/p1, of the shock.

It may be noted that eq. (2 .11 ) also follows from ,u2 == VAVA, by taking
jumps and then using (2.5)-(2.10).

3. JUMPS IN VORTICITY
AND ELECTRIC CURRENT VECTORS

Throughout this section, we assume a constant state ahead of the shock.
We write the vorticity vector WA [77] as

By taking jumps in (3.1) we obtain

where 03BBA denotes the discontinuity

By applying (2.2) to the equations of motion

where JB is the electric current vector defined by

we obtain

where 4 denotes the discontinuity A == - By eliminating
between (3.2) and (3.5) and by using (2.1) we obtain the following equa-
tion connecting the jumps in vorticity and electric current vectors :
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where

From (2.4) and (3.4) it follows that

where (0 denotes the jump ’0 = - By taking jumps in Maxwell’s
equations in the form

we obtain

where 03B6A = [HA] and the brackets around the indices indicate anti-sym-
metry. By taking jumps in the equations obtained by contracting (3.9)
with VA, we obtain

Equations (3.10) and (3.11) give

Now eliminate "Xc and 03B6D between (3.5), (3.12) and (3 . 8) (using (2 . 2) for
[,u,B ]) and in the resulting equation eliminate the magnetic field in favour
of the invariant vector YD to obtain

Now we show that the jump in the normal component of the electric
current vector is the surface divergence of the sheet-current density vector.
By contracting (3.13) with NA we get
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It is clear that the first and the last terms in the right hand side vanish and
hence we get --

proving the statement made above.
By using the results obtained so far and properties of the permutation

tensor one obtains

with By using (3.15) and the definition of
the variable 0153 in (3.13) one gets

It is clear from (3 . 6) and (3.16) that in order to find ] and ]
in terms of the strength, curvature and state ahead of the shock, one has
to determine ~,N and the tangential derivatives of the various jumps. To
find these latter quantities, as we have no more equations at our disposal,
we now assume an equation of state behind the shock and use it in conjunc-
tion with the equation of continuity as follows. It may be noted that the
use of an equation of state is not necessary to find the vorticity jump in
the absence of magnetic field [12 ].
By taking jumps in the equation of continuity we obtain

We now assume that  = ,u(p, p) is a given function of p and p behind the
shock so that the partial derivatives of  with respect to p and p, denoted
respectively by f and g, are known functions. Then we have

By eliminating between (3.17) and (3.18) we get

By taking jumps in the energy equation (obtained on contraction of (3.3)
with VA) we obtain

where the last line is obtained by applying (2 . 2) to [p,B ]. From (3.19)
and (3.20) we get
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where h = - 1 -! C2 ~. Now eliminate A between (3 .21) and (3 . 5)
to get

Equations (3.16) and (3.22) may be considered as a system of two linear

equations for "XN and [JA]. Thus the solution of this system produces the
required ] which on substitution in (3 . 6) determines the vorticity jump.

It is interesting to look at the relation between the normal components
of the jumps in vorticity and electric current vectors. It follows from (2. 5)
and (3.7), after some simplifications, that

In view of the skew-symmetry of the permutation tensor the terms involving
the second fundamental tensor and Nc, and the last term when considered
with ~,8, in the right hand side of (3.23), vanish. Thus we have

where we have written = ~,~ + again in view of the skew-
symmetry of the permutation tensor. We now note that

By carrying out the necessary algebra, we obtain

and

By using (3.25)-(3.27) and (3.14) in (3.24) we obtain

where the tangential magnetic field occuring in (3.26) is eliminated with
the help of the invariant vector YA. It is now clear from (3.28) that the
discontinuity in vorticity across a shock (in particular a plane shock)
gives rise to a discontinuity in the electric current.

Finally, the tangential derivatives of the equations (2.10), (2 .11 ) and
the known function ~2 = ~2(~2 ? PZ) together determine all the tangential
derivatives in (3 . 6) and (3 .16) in terms of the strength [ p ]/p 1, curvature
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and state ahead of the shock. Hence and are known in terms of
the latter quantities. For example, in the case of transverse magnetic field
and for the choice ,u =1 + -1), y (assumed constant) being the
ratio of specific heats, equations (2.10) and (2.11) give

where V = p + 03C3 |H|2/2 is the total pressure.
It then follows from (3 . 25) and (3 . 29) that p2,v can be calculated in terms

of the curvature, strength and state ahead of the shock. In the absence
of the magnetic field, eq. (3.29), omitting the details, reduces under the
strong shock approximation to the cubic eqn. for 1 obtained by
Guess [18 ].
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