@article{AIHPA_1983__38_1_7_0, author = {Klaus, M.}, title = {On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many {\textquotedblleft}bumps{\textquotedblright}}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {7--13}, publisher = {Gauthier-Villars}, volume = {38}, number = {1}, year = {1983}, mrnumber = {700696}, zbl = {0527.47032}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1983__38_1_7_0/} }
Klaus, M. On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”. Annales de l'I.H.P. Physique théorique, Tome 38 (1983) no. 1, pp. 7-13. http://www.numdam.org/item/AIHPA_1983__38_1_7_0/
[1] I. Op. Theory, t. 1, 1979, p. 109-115. | MR | Zbl
,[2] Methods of Modern Mathematical Physics, t. II, Academic Press, 1975. | Zbl
, ,[3] Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971. | MR | Zbl
,[4] Comm. Math. Phys., t. 60, 1978, p. 13-36. | MR | Zbl
,[5] Methods of Modern Mathematical Physics, t. IV, Academic Press, 1978. | Zbl
, ,[6] Perturbation theory for linear operators, Second Ed., Springer, 1976. | MR | Zbl
, ,