@article{AIHPA_1977__27_4_407_0, author = {Droz-Vincent, Ph.}, title = {Two-body relativistic systems}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {407--424}, publisher = {Gauthier-Villars}, volume = {27}, number = {4}, year = {1977}, mrnumber = {496313}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1977__27_4_407_0/} }
TY - JOUR AU - Droz-Vincent, Ph. TI - Two-body relativistic systems JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1977 SP - 407 EP - 424 VL - 27 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1977__27_4_407_0/ LA - en ID - AIHPA_1977__27_4_407_0 ER -
Droz-Vincent, Ph. Two-body relativistic systems. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 27 (1977) no. 4, pp. 407-424. http://www.numdam.org/item/AIHPA_1977__27_4_407_0/
[1] Journ. Math. Phys., t. 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | Zbl
,Rev. Mod. Phys., t. 35, 1963, p. 350. | MR
, , ,Phys. Rev. Letters, t. 17, 1966, p. 1156. | Zbl
, ,Journ. Math. Phys., t. 8, 1967, p. 1756; t. 11, 1970, p. 1918.
,Ann. Inst. H. Poincaré, t. 3, 1970, p. 307. | Numdam | MR
,[2] Lett. Nuovo Cim., t. 1, 1969, p. 839; Physica Scripta, t. 2, 1970, p. 129. | Zbl
,[3] Phys. Rev., t. D 1, n° 8, 1970, p. 2212.
,[4] Nuovo Cimento, t. 12 B, n° 1, 1972, p. 1. | MR
,[5] Lett. Nuovo Cim., t. 7, n° 6, 1973, p. 206.
,[6] Reports on Math. Phys., t. 8, n° 1, 1975, p. 79. | MR
,[7] Our argument about it in ref. [4] is wrong, a term being omitted, thus its p. 8 is erroneous. However the theorem thereby stated in covariant form is true in the Poincaré invariant case. The correct proof is due to J. Martin (unpublished).
[8] Hamiltonian Construction of Predictive Systems. Book in the honor of A. Lichnerowicz, Cahen and Flato, ed. D. Reidel, Dordrecht, 1977. | MR | Zbl
,[9] Recall that, even in classical mechanics, the positions are H-J-coordinates only in the free case.
[10] Ann. Inst. H. Poincaré, t. XXII, n° 3, 1975, p. 173. In this paper they have introduced H-J-coordinates in Predictive Mechanics. | Numdam | MR
, ,[11] The classical Theory of Fields, Chap. 2, p. 39, Pergamon. | Zbl
,[12] C. R. Acad. Sc. Paris, t. 280 A, 1975, p. 1169. | MR
,[13] A different generalization is considered in ref. [8].
[14] C. R. Acad. Sc. Paris, t. 282 A, 1976, p. 727.
,[15] See for instance: Comm. Math. Phys., t. 3, 1966, p. 323. | Zbl
, , ,[16] In contrast with our point of view, some authors have introduced quantum relativistic oscillators by wave equations which are not derived from a classical system by the procedure of quantization:
Phys. Rev., t. D 12, 1975, p. 129; t. D 12, 1975, p. 122.
, ,, , Preprint, 1976.
Phys. Rev., t. D 12, n° 11, 1975, p. 3583.
, ,