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Kinematics of relative motion of test particles
in general relativity 

Stanislaw L. BA017BA0143SKI 
Institute of Theoretical Physics, University of Warsaw, Poland

Ann. Inst. Henri Poincaré,

Vol. XXVII, n° 2, 1977

Section A :

Physique théorique.

ABSTRACT. - The paper starts with a detailed mathematical study of
the concept of geodesic deviation in pseudo-riemannian geometry. A gene-
ralization of this concept to geodesic deviations of a higher order is then
introduced and the second geodesic deviation is investigated in some detail.
A geometric interpretation of the set of generalized geodesic deviations
is given and applied in general relativity to determine a covariant and local
description (with a desired order of accuracy) of test motions which take
place in a certain finite neighbourhood of a given world line of an observer.
There is also discussed the proper time evolution of two other objects
related to geodesic deviation : the space separation vector and the telescopic
vector. This last name is given here to a field of null vectors along observer’s
world line which always point towards the same adjacent world line. The
telescopic equations allow to determine the evolution of the frequency
shift of electromagnetic radiation sent from and received on neighbouring
world lines. On the basis of these equations also certain relations have been
derived which connect the frequencies or frequency shifts with the curvature
of space-time.

RESUME. - La premiere partie contient une etude mathematique détaillée
de la notion de deviation géodésique dans une géométrie pseudo-rieman-

0) Cet article et le suivant [26] sont une version élargie d’une conference présentée
par l’auteur au College de France, le 2 decembrc 1975. L’auteur voudrait remercier
Mme Y. Choquet-Bruhat et MM. A. Lichnérowicz et M. Flato pour leur généreuse hospi-
talité durant son séjour a Paris et a Dijon, au cours du mois de decembre 1975.

(2) Research supported in part by the U. S. National Science Foundation, contract
GF-36217, and by the Polish Research Program MR-1-7.
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116 S. L. BAZANSKI

nienne. On introduit alors la generalisation de cette notion a la notion de
deviation géodésique d’ordre supérieur et on etudie en detail la devia-
tion géodésique du second ordre. On donne l’interprétation géométrique
de l’ensemble des deviations géodésiques généralisées et on l’utilise pour
determiner, en relativité générale, la description covariante et locale (a
l’ordre d’approximation qu’on veut) des mouvements des particules
d’epreuve dans un voisinage fini de la ligne d’Univers d’un observateur
donné. On etudie aussi 1’evolution en temps propre de deux autres objets
lies a la deviation géodésique : le vecteur de separation d’espace et le vecteur
télescopique. Le nom de vecteur télescopique est donné a un champ de
vecteurs nuls qui commencent aux points de la ligne d’Univers de l’obser-
vateur et sont dirigés vers des points d’une autre ligne d’Univers voisine.
Les equations télescopiques permettent de determiner 1’evolution du depla-
cement vers le rouge d’un rayonnement électromagnétique émis et reçu
entre lignes d’Univers voisines. A l’aide de ces equations, on deduit aussi
certaines relations entre les fréquences ou le déplacement des fréquences
et la courbure de 1’espace-temps.

INTRODUCTION

In the general theory of relativity certain peculiarities concerning the
motion of particles are showing up. The most important one is this connected
with the universality of coupling to the gravitational field. There are, however,
also some other, perhaps more subtle, differences between the status of
motion in general relativity and in other field theories. One of them is
that from a geometric point of view the motion of a test body appears to be
less interesting and renders less information about the field than the compa-
rison of motions of two near-by small test bodies. The first motion,
along a geodesic in space-time, plays here the same role as the uniform,
straigh line motion in the Newtonian theory. The true intensity of the
gravitational field, the Riemann curvature tensor, does not enter the equa-
tions of motion of test particles, but it does, instead, the geodesic deviation
equations which were first formulated by Levi-Civita [1] (comp. also [2]
and [3]). These last equations can be considered as describing the relative
motion of two infinitesimally close test bodies. Thus not the free fall of one
body, but at least of two of them can be used as a probe for testing the gravi-
tational field. In a number of publications, e. g. [4]-[13], theoretical impli-
cations of that fact were studied and several devices for idealized experiments
to determine the curvature of space-time were proposed. It also has formed
a basis on which realistic gravitational waves detectors of the mechanical
type have been designed (cf. [13]-[16]).
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117KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

The intention of the present paper is to formulate a description of the
relative motion of two not necessarily infinitesimally close test particles.
The basic notion here is a set of vector fields-the generalized natural geodesic
deviations determined along a chosen geodesic line r, i. e. determined in a
sense locally. Then the description of a geodesic from a neighbourhood
of r is provided in terms of a recently proven [17] geometric formulation of
the Taylor expansion theorem.
The question of description of the relative motion of two freely falling

material points has been also discussed in a paper by Hodgkinson [18].
There, the particles are infinitesimally close, but their relative velocity
may be comparable with that of light. The approach used in [18] differs,
however, in many respects from the one formulated here and is not at all
evident how it could be extended for finite space separations. As one of the
main differences it may be pointed out that in [18] several quantities defined
on the neighbouring line must be transported back (in an approximate way)
to the basic line, whereas in the present paper all quantities and the equations
describing their evolution are from the beginning determined along the
basic geodesic r.
The quantities introduced here form a sort of « kinematic momenta »

entering as coefficients the covariant Taylor series describing the relative
position of the other particle. If one wishes to deal with an approximate
expression, it is sufficient to truncate the series in a desired way and this
procedure has no influence on the form of the surviving coefficients.

Let me now briefly comment the content of individual sections of this
paper.

It starts with a review of some well-known properties of arbitrarily para-
metrized geodesic lines in a pseudo-Riemannian manifold. I have chosen
to include such a review here for reference purposes, since the material
included is necessary to get a deeper insight into properties inherited in a
way by the generalized geodesic deviation vectors of all orders. The form of
presentation accepted in section 1 has also been chosen from this point of
view.

In section 2 the concept of the (first) geodesic deviation vector for
arbitrarily parametrized geodesics is introduced and it is shown how by
means of a constraint condition it reduces to the natural geodesic deviation
which is defined as preserving the natural parametrization on adjacent
geodesics (and which amounts to the usually discussed one). A big part of
material presented in this section is rather known. In my opinion, however,
no due stress has been laid in the past on the role of the constraint condition.

Section 3 starts with a construction which heuristically justifies the defini-
tion of the second geodesic deviation vector accepted here for the case of
general parametrization. This object is then reduced by means of a constraint
condition to the natural second geodesic deviation vector. This last vector
is identical with the object introduced by me in [19] ; by that time, however,
Vol. XXVII, nO 2 - 1977.



118 S. L. BAZANSKI

the role of the constraint condition was not quite clear to me (the last
question will also be discussed in a following paper [26] devoted to some
dynamical problems connected with the relative motion). Next it is pointed
out how the geometric form of the Taylor theorem implies a geometric
interpretation of the second (and also of the higher) geodesic deviation.
It also justifies the accepted definition and indicates how the geodesic devia-
tions of higher order should be defined. This procedure could be carried
on to an arbitrary order, if desired. The only limitation of its validity is the
analycity of the connection and of geodesic lines in the considered region of
space-time manifold. This program has also been performed for the third
geodesic deviation. The corresponding equation will, however, not be

published here as it contains a rather lengthy expression which does not
introduce anything new from a general point of view. One should only
mention that the equation defining in the second approximation the evo-
lution of the relative position (in the case of natural deviations) is identical
with a corresponding equation from [7~]. These equations start to differ,
however, if the third geodesic deviation is included.
The concept of the natural geodesic deviation appears to be too rigid for

some applications. The requirement the general deviation to be natural
is usually inconsistent with some other conditions one would like to impose
additionally on these vectors. Section 4 contains a discussion of the connec-
tion between the natural geodesic deviation and another specialization
of the general deviation vector-called the separation vector-on which
the condition of orthogonality to the basic world line has been imposed.

In section 5 a similar discussion is performed for deviation vectors that
are always null. They are called the telescopic vectors. Due to propositions
proven in sections 2 and 3 these vectors can be expressed through the natural
geodesic deviations. They form a convenient tool for discussion of optical
effects when the two particles exchange light signals. As a natural result
of this construction one has obtained here a number of relations connecting
frequencies, frequency shifts and the curvature of the manifold. Some of
them are connected with already known relations, derived in [20] and [21],
but some are new.

Relations of that kind permit to complete the list of already existing
schemes of idealized experiments aiming to determine the curvature. They
are introducing some more relativistic flavour to the rather Newtonian type
of constructions utilized in the past.

1 GEODESICS

Let Vn be a pseudo-Riemannian manifold endowed with a coordinate
system { ~ } valid in a region Vn. In such a coordinate system a geodesic
line r, parametrized by a parameter r E [a, b] = I c tR is then described

Annales de l’Institut Henri Poincaré - Section A



119KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

by a set of n functions ~: I - I~ (a = 1, 2, ..., n), where = x" o r(r).
These functions must satisfy the equations

where D d03C4 denotes the absolute derivative along 0393, g03B103B2 are the components

of the metric tensor of V , u03B1 = d03BE03B1 dT and u - g ua. It will be assumed thatn d,~ a ga~ ° ed that

~ 0 anywhere along r.
Since --- 0 is a « strong o identity (i. e. valid for any ~°‘) Eqs. (1.1)

are not independent and together with the initial conditions

do not determine ç% uniquely. This can be stated more precisely as

PROPOSITION 1.1. - If a set of n functions ~: I - R, a = 1, ..., n, is a
solution of the system of equations (1.1), then

i) the set of composite functions ç% o f-with an arbitrary C2 function f:
[a, b] - [a’, b’] such that f’ ~ 0-is also a solution of Eqs. (1.1);

ii) any solution ~" of ( 1.1 ), which satisfies the same initial conditions
as ~, can be represented as ~" - ~" o f, where fe CZ is uniquely defined by
the two solutions.

The proof - Part i) follows from an immediate computation.
The proof of ii) consists in constructing a differential equation for f

This equation must be supplemented by some initial conditions which can
be taken in one of the two possible forms.

First, for T = To, ç% and [% may fulfil the same conditions (1.2). The
freedom of f is then reduced to such C2 functions for which

Second, ~ and might describe only the same geometrical line, i. e. for
a certain ;0 (not necessarily equal to To)

where k is a nonzero and otherwise arbitrary constant. Then

The proof of part if) requires yet the following.
Vol. XXVII, n° 2 - 1977.



120 S. L. BAZANSKI

LEMMA. - Any solution of Eqs. (1.1) which satisfies (1.2) is completely
specified by a choice of a continuous function /L: I - R.

[The proof of the lemma : a given solution ~~ defines as

If a function ~: I is given, ~°‘ is uniquely defined as the solution of the
differential equations 

-

which satisfies (1.2) as initial conditions. For such a ç0152 ( 1. 6) is satisfied
as a « weak » identity and thus ç0152 is also a solution of (1.1)].

COROLLARY of the lemma. - There exists a one-to-one map F of the
set of all solutions of Eqs. (1.1), corresponding to some fixed initial data
in ( 1. 2), onto the set of all continuous functions A: I - f~.
Now, if ç0152 is a solution of Eqs. (1.1) fulfilling ( 1. 2), then ç0152: = ç0152 of

is, according to part i) of Prop. 1.1, also a solution. Let ~, then

~(~) = A is defined, as it follows from (1. 6), as

Thus, if ~ and are any two solutions of Eqs. ( 1.1 ), fulfilling respectively
( 1. 2) or ( 1. 4), i. e. ~(~) = A and ~(~) = f are given functions, then
solving (3) (1. 8) correspondingly with (1. 5) or (1.3) one finds such a unique/
that ~ = ~ o f and this ends the proof.
One says that two descriptions, and respectively, of a curve in a

coordinate system { are equivalent, ~" ~ [a, iffthere is such a function/:
[a, b] - [a’, b’], fe C2, that: i) f’(z) ~ 0 in all domain; ii) ~ = ~ o f.
Prop. 1.1 states then that Eqs. (1.1) together with (1.2) uniquely determine
an equivalence class of descriptions of a geodesic r in a coordinate system

0 The solution of (1.8) fulfilling (1.5) is implicitely defined by

where 0(r) = exp F(r) = exp (and 0 and F denned similarly by A)
are given functions. For T == = 1 it renders the solution fulnlling (1.3). For A = A
the formula (*) deiines a law of transformations of the parameter T which preserve the
form of (1.7) ibr a given A; these transformations are parametrized by k and To. For
A = A = 0 they turn over into (1.106).

Annales de l’Institut Henri Poincaré - Section A



121KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

{ x°‘ ~. Each member of the class is defined by Eqs. (1.7) with a fixed func-
tion ~. Thus to find a solution of Eqs. (1.1) fulfilling (1.2) with some given
initial data { ç~, uo }, it is sufficient to solve (1.7) with the possibly simplest
choice of the function ~. Such a choice consists in taking --_ 0 for any
T E I. It introduces the affine parameter.
Thus any set { ç~, of initial data in ( 1. 2) and the equations

determine in a neighbourhood of the initial point r(1’o) a unique geodesic
with a unique affine parametrization. The correspondence, however, between
initial data and the classes of equivalence of solutions of ( 1. 9) is still not
a one-to-one, as two different sets of initial data might lead to equivalent
solutions of (1.9), i. e. might render two different descriptions, characterized
by two different affine parametrizations, of the same geodesic r. This can
be restated as

PROPOSITION 1.2. - Two sets of initial for r = io and

{ ~ for r = ~o will lead to two equivalent solutions and = çX of

The proof is obvious. (1.10 b) is the solution of (1. 8) for ~, = I = 0.
Eq. ( 1.10 a) for an arbitrary k ~ 0 defines an equivalence relation

between sets of initial data. One limits the freedom of choice of these data
by putting on them a constraint condition which chooses one member
from each class of equivalence only.

In Riemannian geometry a universal choice of this kind is e. g.

If a set of initial data, with 0, is not a correct one, i. e. does not
satisfy (1.11), it always can be brought to a correct one by a transformation
of the form ( 1.10 a). A similar condition (with a possible change of sign)
can be used in pseudo-Riemannian case, provided ~ 0.

Since Eqs. (1.9) admit the first integral

(being a « weak » identity) the condition ( 1.11 ) is equivalent to

This condition is thus not only assuring a one-to-one correspondence
between initial data and geodesics r, but it is also introducing a universal,
natural parametrization along all (nonnull) geodesics. This parametrization
Vol. XXVII, no 2 - 1977.



122 S. L. BAZANSKI

is induced by the metric structure of the manifold. In general, any condition
of the type ( 1.12) fixes the unit of the affine parameter scale. It still leaves,
as it is customary and convenient, the freedom of choice of the origin io
of this scale.

In general relativity the timelike geodesics are interpreted as worldlines
of freely falling material test points. The natural parameter is here measured
by an ideal clock which moves with the particle and shows its proper time.
The appropriate description of such a situation is then provided by Eqs. ( 1. 9)
with the constraint condition (1.11) (in case, as it is done here, the signa-
ture + - - - is accepted).

2. THE GEODESIC DEVIATION

Let us consider a one-parametric family of geodesics in Q. Each member r~
of the family is labelled by a value p E [c, ~] == ~ c: (~ and the points on rp
are parametrized by r E [a, b] = I c R. Thus in a coordinate system { x" ~
the coordinates of points belonging to any geodesic of the family are defined
as ~(T, p) : = x" o It is assumed that the n functions ~" : 
defined above are at least of class C2. The set of points

forms a two-cube in Vn. To any pair (t, p) one assigns two vectors, u and r
from the tangent space of Vn at a point p, with the components

These vector valued functions u and r will be called here vector fields on

E parametrized by (r, p) (Since the geodesics may intersect they need not to
be a restriction to E of any vector field in Vn). There evidently holds

Any vector field t on E satisfies the Ricci identity

a

Let us take ta = ~ . Then making use of Eqs. (1.1) which also may
’ u03BBu03BB (

read as

Annales de l’Institut Henri Poincaré - Section A



123KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

we get from (2.3) the identity

which also, due to (2.4), can be written in the form

Eqs. (2.4) and (2.6) can, in particular, be written for a fixed value of p,
say p = 0, e. g. along the geodesic line ro. If we repeat the procedure ana-
logous to that above, but immersing now Fo in another one-parametric
family E of geodesics, with another field Y’"(2, p), we will still get the same
Eqs. (2 . 6) for Y’"(z, 0) along ro. All one-parametric families of geodesics
which contain ro and for which r’"(z, 0) = ~"(r, 0) can be defined as equi-
valent along ro and the corresponding class of equivalence is called the
geodesic deviation vector field along ro.
One can base the definition of geodesic deviation directly on Eqs. (2.6)

without any immediate appeal to E. Let us for this purpose assume that a
single parametrized geodesic line r is given. We define along r a vector
field r (determined at p(-r) E r by r"(~)) as a solution of the differential equa-
tions (2.6) [or (2. 5)] fulfilling conditions

One should take here into account that quantities like rpy, u~, etc.,
enter Eqs. (2. 6) being evaluated at the point p(z) and therefore are given
functions of r. Any solution of the problem so formulated is also called the
geodesic deviation vector field along r. This second definition is of course
more general than the first.

Since Eqs. (2.6) are not independent (contracting them with u~ one gets
a « strong » identity), their solution admits freedom of introducing arbi-
trary functions. This can be restated as in the two propositions :

PROPOSITION 2.1. - If functions I - R (oc = 1, ..., n) are a solution
of Eqs. (2. 6) taken along a geodesic r, then r" of, for any fe Ci 0,
are also a solution of (2. 6) along the same r, but now parametrized by/(T).

PROPOSITION 2.2. - If the set of functions I - R is a solution of
Eqs. (2.6) taken along a geodesic r described by functions ~", then

i) the functions r" + xu" (where K : I - R, K E C2 and is arbitrary) are
also a solution of (2.6) along the same r with the same parametrization;

ii) any solution r" of (2. 6) which satisfies the same initial conditions (2. 7)
as r" can be represented in the form

Vol. XXVII, no 2 - 1977.
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where K E C2 is uniquely determined by r°‘, r°‘ and the conditions :

The proof of Prop. 2.1 and 2.1 i) follows from inspection. Part ii) requires
the

LEMMA 2.1. - A solution of Eqs. (2.6) satisfying (2.7) is completely
specified by a choice of a continuous function ~u : I - R.

[The proof: A given solution defines the function

For a given J1: I - R, ra. fulfilling (2. 7) is defined as the unique solution
of the system of differential equations

in which the function is determined by (1. 6). Such r03B1 solves also (2.6)].

COROLLARY of the lemma: There exists a one-to-one map ~ of the set
of all solutions of Eqs. (2.6), determined by fixed initial data in (2.7), onto
the set of all continuous functions I - R.

Let r03B1 and be two solutions of (2. 6) such that g(r03B1) =  and g(r03B1) = ,
then K in (2. 8) is defined (because of (2.9)) as the unique solution of

with the initial data = K’(to) = 0; what proves Prop. 2.2.
The geometric interpretation of the fact stated in Prop. 2.2 follows at

once from the procedure leading to (2.6) as an identity on E. Because of
the freedom of transformations of the parameter : ~ - /(r, p) (where f :
~ 2014~ R is a C2 function) a, in general, different parametrization may be
introduced on each geodesic rp. In particular one can demand that the
parametrization on the basic geodesic ro (p = 0) remains unchanged,
but changes on those with p # 0 so that

where K is given. Defining p) as in (2 .1 ) and p) as

one easily derives that r0152(r, 0) and 0), i. e. both on ro, satisfy the rela-
tion (2. 8). The multiplicity of solutions of Eqs. (2. 6), described in Prop. 2.2

Annales de l’Institut Henri Poincaré - Section A



125KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

can therefore be interpreted as a possibility of introducing new parametriza-
tions on neighbouring geodesic lines, while keeping fixed the parametriza-
tion on the basic line Fo.

Let us return to the approach with the single geodesic r. If, as in general
relativity, we want to parametrize r by the natural parameter s, then instead
of (2.6) we shall have

The initial value problem (2.7) for Eqs. (2.14) admits, according to

Prop. 2.2 and Lemma 2.1, a whole set of solutions. Each of them is labelled
by a function J1 and is a unique solution of Eqs. of the type (2.10) (now
with £ - 0). All these solutions form an equivalence class of a relation
defined by (2. 8) and it is therefore suflicient to solve only the equation cha-
racterized by a possibly simplest function, chosen to 0. Then (2 .10)
reduces to

The choice p = 0 has a simple geometric interpretation : all the geodesics
adjacent to r are also parametrized by affine parameters (but not necessarily
by the same one).
For each set of initial data in (2.7) Eqs. (2.15) have a unique solution.

Two different sets of initial data might, however, lead to two equivalent
solutions, as it follows from

PROPOSITION 2.3. - Two Ua ~ 0 and {;, of initial data
in (2. 7) will render two solutions r03B1 and r03B1 of (2.15) equivalent in the sense
of (2. 8) iff

(a and b are arbitrary constants and uo are the initial data for r normalized
by ( 1.11 )).
The proof is straightforward and will be omitted.
Eqs. (2 .16 /)) are establishing an equivalence relation of initial data for

(2.15). A single representative from each class of equivalence is determined
by constraint conditions which must be imposed in accordance with the
following first integral: 

_

of Eqs. (2.15). It is, of course, a « weak » identity. The transformation
(2.16 i)) of initial data adds b to the constant here. To fix b it is therefore
Vol. XXVII, no 2 - 1977.



126 S. L. BAZANSKI

sufficient to fix the value of this constant. Usually it is done in the form

and it is sufficient to impose this condition on initial data only.
Interpretation of (2 .18) follows from the ~-definition of geodesic deviation.

On each rp one imposes the condition ( 1.12) in the form

where C is a regular function of p. Then one gets (2.17) for Fo as

If I p=o = 0, it reduces to (2.18) which therefore is a requirement that

geodesics in the « first » neighbourhood of r are parametrized by the same
affine parameter as r (but the freedom of choice of its initial values is still
left alone).
We call, therefore, a vector field r°‘ along a geodesics r the natural geodesic

deviation vector iff it fulfils the constraint condition (2 .18) and is a solution
of Eqs. (2.15) evaluated along r parametrized by the natural parameter.

In general relativity the natural geodesic deviation vector along timelike
geodesics parametrized by the proper time describes thus the motion of
observers from a neighbourhood of r using ideal clocks.
The freedom represented by a in (2.16 ii)) can be fixed by a further cons-

traint

provided (2.18) is imposed. Very often it is convenient to accept it as

In general relativity (2.21) means that r03B1 describes the relative position in the
rest frame of r. However, (2.21) should not be considered to be physically
as obligatory as (2.20). Sometimes it is relaxed as being inconvenient.

Then, however, cannot be interpreted as the measure of the spatial
distance between two neighbouring observers.

3. THE SECOND GEODESIC DEVIATION

A solution of the equations of geodesic deviation describes, in accordance
with its interpretation, only in an approximate way the behaviour of a

geodesic from a neighbourhood of the basic geodesic along which the equa-
tions has been evaluated. If one wishes to improve this approximation,

Annales de l’Institut Henri Poincam - Section A



127KINEMATICS OF RELATIVE MOTION OF TEST PARTICLES

one should explore the possibility of generalization of the concept of geo-
desic deviation to higher orders. Such a generalized notion of second geodesic
deviation has been introduced by the present author [19] for the special case
of a geodesic line parametrized by the natural parameter s. Now we shall
undertake a study of this notion defining it first for geodesics which are
parametrized arbitrarily. This more general approach will help in better
understanding of some properties which emerge even in the special case
when the natural parametrization is being used.

Let us again consider the one-parametric family L of geodesics and let us
additionally suppose that for each geodesic 1~ from this family the geodesic
deviation equation has been solved with some arbitrarily given initial condi-
tions at T = To,

which are continuously parametrized by p. Let r03B1 = r03B1(03C4, p) be any solution
of this initial value problem. Such functions r" determine an additional to
u" vector field on the two-cube S. We define on E another field

Now, to get for w03B1 an equation analogous to (2 . 6), we write the Ricci iden-
tity (2. 3) with t03B1 = (r, p). We apply this identity once again under

the D d03C4 -differentiation in the second term of so obtained equality and take
into account Eqs. (2 . 6). We get

Performing all the differentiations here, we take into account that now
p)) and make use of ( 1.1 ), (2 .1 ), (2.2), (2 . 3), (2 . 6),

(3 .1 ) and of the symmetry properties of the Riemann tensor. All this
results in

Vol. XXVII, no 2 - 1977.
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The set of Eqs. (2.4) [or (1.1)], (2.6) and (3.2) can, in particular, be written
along a selected geodesic ro (e. g. labelled by p = 0) and for a selected
solution of (2.6) for p = 0. When we immerse ro in another E’ and
extend r"(i) to a vector field p) (so that = 0)) of solutions
of (2. 6) on the new E’, in such a way that w’"(z, 0) = w"(z, 0), we shall intro-
duce an equivalence relation between all L’S endowed with fields of solutions
of (2. 6) for fixed both ro and r"(z). The corresponding class of equivalence
is called the second geodesic deviation vector field along Fo.
Now we pass to another, more general manner of defining the second

deviation. Let us suppose that there is a single parametrized geodesic
line r given and that along this line Eqs. (2.6) have been solved for some
initial conditions (2. 7). Let this solution be denoted by too. Then we can

evaluate all coefficients in (3.2) like UIX, rp)’, etc., along r for
this selected solution Eqs. (3.2) are thus turning into ordinary diffe-
rential equations of the second order for Any solution w"(~c) of these
equations, fulfilling conditions

will be called the second geodesic deviation vector field along r.
The n (for a = 1, ..., n) differential equations (3 . 2) are not independent,

since contracting them with U(1. we again obtain a strong identity. Therefore
we have

PROPOSITION 3.1. - If functions w(1.: I - R (a = 1, ..., n) are a solution
of the second geodesic deviation equations (3.2) along a geodesic r, des-
cribed in a coordinate system { by functions çrJ.: I - f~, and for a solu-
tion of Eqs. (2. 5) described by functions r" : I - R, then

i ) the functions w~ of, for any C2 function f such that f ’ # 0, are also
a solution of (3.2) along the same geodesic r described now by 
and for a solution of (2. 5) determined by ,(1. o f;

z7) the functions # = w0152 + 2x 2014 + In I for any C2

function K : I ~ R, form also a solution of (3 . 2) along the same r described

by ç(l and for a solution of (2. 5) determined by = r" + 

PROPOSITION 3.2. - If the set of functions w~: I - R is a solution of

Eqs. (3.2) along a given geodesic r described by functions ~" and for a
given solution of the first geodesic deviation equations along r described
by functions then

i) the set of functions + (where ~ : I - E C2, is arbitrary

and u" - 2014) is also a solution of (3.2) along the same r with the same
parametrization and for the same r03B1;
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ii) any solution WCX of (3.2) fulfilling the same initial conditions (3.3) as
w~ can be represented as

with a certain C2 function ~ fulfilling the conditions: = 0.

The proof Prop. 3.1 and 3.2 i) follow from inspection. We also have

LEMMA 3.1. - A solution of Eqs. (3. 2) satisfying (3 .1 ) is completely
specified by a choice of a continuous function v : I - R.

[The proof: A given solution wa (with ~°‘ and r(l) defines the function

For a given v : I -~{R ~ fulfilling (3 . 3) is defined as the unique solution
of the system of differential equations

where ~ and ju are given by ( 1. 6) and (2 . 9). Such w°‘ solves also (3 . 2)].

COROLLARY of the lemma: There exists a one-to-one map ~P of the
set of all solutions of (3.2) with given initial data in (3 . 3) onto the set of all
continuous functions v : I - R.

Let w°‘ and w03B1 be two solutions of (3.2) such that v and

= v, then ~ in (3.4) is defined [cf. (3.5)] as the unique solution of

with the initial data ~’(~o) = 0 and this ends the proof.
The multiplicity of solutions of Eqs. (3.2), described in Prop. 3.1 ii) and

3.2 can again be interpreted as a possibility of introducing in the next
approximation a new arbitrary parametrization on neighbouring geodesic
lines, keeping fixed the parametrization on the basic line r and in case of
Prop. 3.2 keeping also fixed the selected solution r"(z, p). To show this one
should complete (2.12) by the condition

(and (2.13) by ;Z: = 20142014 (-t’, /?)J and continue the argument from Section 2.
Vol. XXVII, n° 2-1977.
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If the geodesic r is parametrized by the natural parameter and the selected
first deviation rrt(s) fulfils (2.15) with the initial conditions (2.7) and the
constraints (2.18), then the second geodesic deviation equations are reduced
to

The initial value problem (3.3) for Eqs. (3.9) admits a family of solutions
each member of which is labelled by a function v and is a unique solution
of Eqs. of the type (3.6) (now with J1 = A = 0). Since all these solutions
are coupled to each other by (3.4) (which introduces an equivalence relation
between solutions of (3.9)), it is sufficient to solve the simplest equation
corresponding to the choice of v z 0:

This choice can again be interpreted as determining a situation in which all
neighbouring geodesics up to the « second » order of neighbourhood are
parametrized by affine parameters.
For each set of initial data in (3.3) Eqs. (3.10) have a unique solution.

Two different sets of initial data might, however, lead to two equivalent
solutions, as it follows from

PROPOSITION 3.3. - Two different sets, { w~ and {;, i~ ~, of
initial data in (3 . 3) will render two solutions w" and w03B1 of (3 .10) equivalent
in the sense of (3.4) iff

(c and d are arbitrary constants and ua are the initial data for r fulfill-
ing (1.11)).
The proof is straightforward and will be omitted.
Eqs. (3.11 i) are establishing an equivalence relation of initial data for

(3.10). A single representative from each class of equivalence is determined
by constraint conditions which must be imposed in accordance with the
following first integral:

of Eqs. (3 .10). It is a « weak » identity. The change (3 .11 i)) of initial data
adds d to the constant in (3 . 1 2). To fix d it is therefore sufficient to fix the
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value of this constant. It turns out that a reasonable choice is to put it

equal to zero,

and it is sufficient to impose this condition on initial data only.
The justification and interpretation of the choice of (3 .13) follows from

the E-approach. On each geodesic rP one imposes the condition (2.19).
Differentiating it twice with respect to p one derives (3.12) with the constant

being equal to d2C d03C12|03C1=0
. The condition (3.13) should therefore be inter-

preted as the requirement that geodesics from the « second» neighbourhood
of r are parametrized by the same affine parameter as r.
We call w%y) a natural second deviation vector iff it fulfils the constraint con-

dition (3.13) and is a solution of Eqs. (3 .10) in which r is a naturally para-
metrized geodesic and ra(s)-a given natural first geodesic deviation vector.
The freedom of choice of the initial point on the parameter scale in the

neighbourhood of r can be fixed by a further constraint

provided (3.13) is imposed. Specification of the value of the constant here
restricts the freedom brought in (3 .11 ) by c. Let us observe that the integral
here is equal to the Caratheodory action (cf. [26]), evaluated for a fixed
solution r~.
The second geodesic equations (3.10) (as well as (3 . 6) and (3 . 9)), in

contradistinction to (2.15), are not homogeneous. Thus, even if initially
for s = so w« and ds vanish, but there is a nonvanishing e r or 2014
along the geodesic r, a nonvanishing field w03B1 will appear for subsequent
values of s (If one insists on the condition (3 .13), then, of course, one must

initially have at least u03B1 Dw03B1 03B403C3 ~ 0).
The kinematic interpretation of the second geodesic deviation vector is

implied by the geometric formulation of the Taylor theorem for curves
on manifolds given in [17]. For our present purpose we express it in the
following form :

THEOREM. - Let A be a curve in an n dimensional differentiable manifold Vn
endowed with a symmetric affine connection analytic in a region g c Vn
and let A be described in a coordinate system { x« ~ by equations x«(p) =A~).
Let further A be analytic in Q, i. e. for any two points p E Q, q E Q such that

= A~(p), x«(q) = the series
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(for a = 1, ..., 11) are convergent, then there exists such a sequence of
vectors r(k) (k = 0, 1,2, ... is numerating separate vectors), all from the
tangent space Tq(Vn) at q, with components r~k~, that the geodesic r sent
from q in the direction determined by the vector l(q) E Tq(Vn) with the com-
ponents

will intersect the curve A at the point p for the value p of the affine parameter
along r I’ provided p belongs to a certain surrounding U of q, where U c Q.

In [1 7] a general, rather complicated formula for the vector coefficients r(k)
corresponding to an arbitrary value of k has been given. Here we quote
only a few first of them

where are components of the tangent vector to A at q and the absolute
derivatives of t" along A are evaluated for p = 0, i. e. also at q.

Let us now take two geodesics, rand r, and extend them to a

family E of geodesics, described ~"(~, p), so that p = 0 on r and

p = p = const on r. The curve from the theorem is then defined by
A03B1 = 03BE03B1(03C4, p) for 03C4 = const and The theorem asserts

that a geodesic r sent from the point q with the coordinates ~(r, 0) in the
direction of the vector

vectors from defined in agreement with (2.1) and (3.1)] will almost
intersect, for the afline parameter along r, equal to p, the geodesic r at the
point p labelled by ~(r, p), missing it with an error of the order 0(p3).
This establishes the kinematic interpretation of the second deviation vector.
Formulae (3.16) and their generalization for an arbitrary order indicate
also how one should define geodesic deviation vectors of a higher order.

Let us discuss this interpretation in the case of general relativity, where
two timelike geodesics, r and r, parametrized by the natural parameter s
are interpreted as the world lines of two freely falling test observers equipped
with ideal clocks. We shall demonstrate how the knowledge of their world
lines enables to formulate such initial conditions for Eqs. (2.15) and (3.10)
(both taken along F) that their solutions r"(s) and will determine the
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right vector (3.17) for the just described construction of the geodesic
joining rand r. For this purpose let us take a spacelike geodesic yso which
joins (4) a point r(so) with r(so), comp. fig. 1. The components of the tangent
vector to Yso at r(so) are denoted (5) by Yo. This vector defines along yso an
affine parameter p taken to be p = 0 at r(so) and p = p at r(so) (The
metrical distance between r(so) and r(so), measured along yso, is then equal

(4) We limit our considerations to such a region of space-time in which all the construc-
tions discussed can be performed with a unique result.

(°) This step is not a unique one. We could also denote this vector by ro -E- 2 1 pwa , with
all obvious implications.
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to ro"ro + 0(p2) ; we could have taken a normalized ro, but more conve-
nient is to think of it as having the dimension of length and of p as being
dimensionless). The next step is to define along ySO a vector field u"(so, p)
satisfying: u"(so, 0) = u"(so) and u"(so, p) = where u"(so) and 
are components of the tangent vectors correspondingly to r at r(so) and
to r at r(so). This can be done in infinitely many ways, the simplest, however,
is the « linear » interpolation :

where the parallel bars II indicate that the corresponding vector has been
parallely transported along yso from its original position to a point yso(p)
(Sending now geodesics from for any p E [0, p], in the direction of

p) we can construct a two-cube L containing both r and F). Let us,
in agreement with (2.2), define

Taking then r03B10 and v03B10 = -r- (so, 0 ) as initial data in ( 2.7 ) for E q s. (2.15),
we uniquely determine a field ra(s) along r (It is a natural geodesic deviation
vector since (2.18) is fulfilled by (3 .19) automatically). A geodesic sent from
the point F(s) in the direction of ra(s) will then, with an approximation of
0(p2), intersect r at r(s) for the value of its afline parameter equal to p.
Next we evaluate Eqs. (3 .10) along r for the just determined solution 

of (2.15) and solve it with initial data : w03B10 - 0 ; 0), taking

This agrees with (3 .1) and (2. 3); p) is the tangent vector to 1’so at 
The properties of the two geodesic deviation equations and of the Taylor

theorem then imply that a geodesic ys sent from r(s) in the direction of

will intersect [with an accuracy of 0($~)] the geodesic f
at the point for its affine parameter equal to p. The proper time inter-
vals : sr between the points r(s) and r(so) on 0393 and s0393 between so obtained
r(s) and r(so) on r measured by two ideal clocks comoving with r
and r are equal to each other [modulo 0(03C13)], as our initial data automati-
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cally satisfy the conditions (2.18) and (3.13). The geodesic distance, along ys,
between the points r(s) and r(s) is equal to

and is a function (6) of s. This quantity, however, is not in general a measure
of the spatial distance between the observers r and r.
Such construction of initial data at r(so), when a geodesic r from a

neighbourhood of r is given, is of course not a unique one, although the
simplest. Conversely, if we are given: a geodesic r parametrized by s;
two sets of initial data for s = and { w~, 1 vo }, fulfilling the
constraint relations (2 .18) and (3 .13) ; and a value p : then solving Eqs. (2 .15)
with the initial conditions (2.7) we determine with an accuracy of 
a unique geodesic r in the neighbourhood of r. Solving then the initial value
problem with conditions (3 . 3) for Eqs. (3.10) we improve the approximation
of determining r to the order of 0(,;;3). Such. procedure can be carried on to
an arbitrary order of accuracy by introducing along r generalized geodesic
deviations of arbitrary order.

4. THE SPACE SEPARATION VECTOR

In the construction above no use was made of conditions (2.20) and
(3.14). Imposing additionally the condition (2.21) one defines the
deviation vector r1 which can also be considered to be the projection of any
other solution r" of (2.15) on the linear subspace orthogonal to u" :

A geodesic yl sent from r(s) in the direction of r1(s) will inter-
sect [modulo 0(p2)] the geodesic r for a value p of its afline parameter intro-
duced by the initial conditions. y1 will also be orthogonal [modulo 0(p ~’ 2 )]
to r. Thus Ý - p is, when neglecting terms of the order 0(p2),
the spatial distance between r and r, i. e. the distance measured in their
mutual [modulo 0(p2)] rest frame. Therefore, the first natural geodesic

(6) Formula (3.21) shows thus in a direct way that although p is an amne parameter
along any ys for so  s  si, its choice on every ys is determined by a, in general, different
normalization.
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deviation vector r1, determined along r by Eqs. (2.15) and the condi-
tions (2.18) and (2.21) will be called the first spatial separation vector.
A different situation arrises in the case of the second natural geodesic

deviation. Here, even if we impose on solutions of Eqs. (3.10) (taken along r
for a given the conditions (3.13) and (3.14) (putting there : const = 0)
and take initial data satisfying = 0, we shall still get u«w" ~ 0 for
subsequent values of the parameter along r.
We define the second separation vector s" along a timelike geodesic r

as a second deviation vector for which: i) = 0 at any point of r; ii) a

geodesic led from r(s) in the direction of rf(s) + ~ 1 ~ P~M will intersect r
modulo OC~3).
Assume that r is parametrized by s. The evolution along r will not

be determined any more by (3.10), but by the more general Eqs. (3.9),
because the geodesics ys will in general introduce on r a parametrization
which will not be a natural one (We limit our consideration to cases in which

geodesics ys project the parametrization on r into a parametrization on r)’
Thus the evolution of the second separation vector, along r parametrized

by s for a given rl, is determined by the equations

(which, as we know, are dependent) and the condition

Prop. 3.2 implies then that the initial value problem for the system (4.2)
and (4.3) is well defined. To show this let us take a solution w"(s) of (3.9)
satisfying for s = so the conditions : = 0 and (3.13). Then due to
(3.14) we must have : s" = w" + ~u", and (4.3) holds iff 1/1 = - 
Thus

The geodesic distance between r and r along geodesics ys is equal to

This quantity is the spatial distance of r in the rest frame of r modulo
terms 0(;;3). It is in general not equal to the corresponding distance of r
from r in the rest frame of r, since in the approximation considered the
geodesies ~ are not, in general, orthogonal to r any more.
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Similarly, one can define separation vectors of higher orders. All they can
be expressed by means of higher order geodesic deviation vectors.

5. THE TELESCOPIC VECTORS

At first sight the concept of the natural geodesic deviation, although
provided with an intuitive geometric interpretation, may seem, from the
point of view of a relativistic program of constructing space-time objects
by means of propagation of light signals, not to be very interesting. This
concept can, however, be easily related to objects which have a direct
physical interpretation.

Let us define the first telescopic vector k" along a timelike geodesic r
as a first geodesic deviation vector for which: i) k"k" = 0 at any point
of r; ii) a null geodesic ÅT led from r( 1’) in the direction of k" will intersect
[modulo 0(p2)] the same geodesic r for any value T E I of the parameter
on r.
The evolution of k" along r cannot be described by Eqs. (2.15) as they

are not consistent with i). It should, however be described by means of
Eqs. (2.14). Thus, when r is parametrized by s, the first telescopic vector
along it is determined by the set of equations

Let r" be the first space separation vector along r (from now on we omit
the subscript 1). Then from Prop. 2.2 : k"(s~ = r"(s) + and (5.2)
turns out to be equivalent to

Our problem has thus two solutions : advanced telescopic vector
(which instead of a telescope characterizes rather a photon emitting device)
and k03B1-2014the retarded telescopic vector, both given by

The relation (5.3) can now be also written as

to yield

Eqs. (5 .1 ) are general geodesic deviation equations and so their solution,
the vector enjoys the properties of any deviation vector. In particular,
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a null geodesic Às sent from r(s) will meet r [modulo 0(p2)] for the value of
the affine parameter along Às equal to p. For each null geodesic Às going out
from r(s) its tangent vector k°‘ and with it the normalization of the corres-
ponding affine parameter p on Às depend on s. To obtain on each Às a para-
metrization suitable for comparing the afline parameter distances along
different Às and ~~, one ought to introduce a tangent vector ka whose nor-
malization is s-independent. If one choses = ± 1, then, because
of (5 . 5),

where

is defining the spatial direction of a telescope in the rest frame of r. The
affine parameter distance between F and r is then equal, modulo 0(p2),
to their spatial distance.

Let us take a family of null geodesics which go out from points belong-
ing to an arc of a timelike world line r and all of which intersect a second
timelike world line r. In general, provided these geodesics will not focus
or form caustics in the region between r and r, if we parametrize this family
by means of the parameter s from r, it will introduce a new parameter r
on r, being a projection of s. In terms of the natural parameter; on r we
have, of course: r = f (s), f’ ~ 0. Let us now suppose that the obser-

ver r sends a light signal with a frequency vo which is received at f with a
frequency v, then, assuming that the ideal clocks along rand r are properly
synchronized, i. e. As = A;, we shall get

(comp. the upper part of fig. 2). Similarly, when r is receiving with a fre-
quency v a signal emitted by r with the frequency vo, one obtains

where the subscripts + and - indicate that the projection has been per-
formed in each case by a different family of null geodesics. These formulas
are just other forms, convenient for our purpose, of the well-known general
formula for the frequency shift (cf. [22], [23], [3], [24], [25]).
When rand r are two timelike geodesics and r is characterized

[modulo 0(i~)] by the deviation vector field on r and by the value of p
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introduced by the initial conditions, we have [cf. Prop. 2.2; (2.15); (5.4)]:

with K given by (5.5). Neglecting terms of the order 0(p2), we obtain

where = d- p is the spatial distance between r and r
modulo O(p~). Introducing z : = 2014~2014~, one can rewrite (5 . I I) and (5.12)
in the form
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This formula has been derived some time ago by Ehlers [20] as a result
of certain elementary considerations. Here it is a particular consequence of

Prop. 2.2 and appears as the first step of a systematic, completely covariant

procedure.
We can now easily obtain the law of evolution of z along r in the consi-

dered approximation. Differentiating (5.13) with respect to s [cf. (2.15)]
one gets

Making use of definition (5.7) one can rewrite this formula as

This relation enables one to determine the scalar curvature of space-time
at the point of observation, corresponding to the bivector 

= 

by receiving light signals from a satellite and measuring the rates of change of
the redshift and of the direction of the telescope as well as the distance from

the satellite. In this approximation it is irrelevant whether the curvature is
taken at the point of observation or of emission of the signal. Eq. (5.14)
is related to a result of Bertotti {’) [21].
The second telescopic vector is defined as such a second geodesic devia-

tion vector n03B1 along a timelike geodesic r that:

at any point off; 
’ . ,

it) for any T e I a geodesic 03BB03C4 led from r(’t) in the direction of k03B1 + 1 2 03C1n03B1

intersects [modulo 0(p~)] the geodesic r.
In effect of this definition and of (3.2), in the case of r parametrized by s,

the second telescopic vector is determined by the eqs.

where is a given first telescopic vector along r.

0) I am very much indebted to Professor Bruno Bertotti for a discussion and for making
me aware about some of the references.
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According to Prop. 3.1 ii ) and 3.2, Eqs. (5.15) have a unique solution of
the initial value problem, compactible with (5.16). Let w" be the natural
second geodesic deviation vector along r for the given natural first geodesic
deviation vector r03B1 = (03B403B103B2 - u03B1u03B2)k03B2 [cf. (5.6)], then from Prop. 3.1 ii)
and 3.2 : n" = w" + 2 Dr03B1 03B403C3 03BA03C103C503C1 + Because of (5.16):

and

These quantities can easily be expressed in terms of the first and the second
natural geodesic deviations : (now = and w°‘. We have

where the subscripts + and - should correspondingly refer to the advanced
&#x3E; 0) and the retarded  0) first telescopic vector. So

The afline parameter distance between r and r is in this approximation
not any more equal to the corresponding spatial separation distance

[cf. (4.5)]

but to

i. e. there appears a correction describing the recession of the second body
between the times of emission and reception of the light signal.
To find the redshift in the approximation considered now, we must

complete the expression (5.10) and write it, due to Prop. 3.2 and to (3 . 8), as

Thus, neglecting terms of the order O(p3), we have according to (5 . 8) :
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where the last term has been obtained by making use of (3.14) which due
to (2.15) may be also written as

Similarly from (5.9)

or, in the approximation considered,

Now, one could without any difficulty write down the formulae correspond-
ing to (5 .13) and (5 .14) in the approximation considered. There are, however,
some other relations which enable one to exhibit the second order effects
alone and not on the background of the first order terms.

Let us consider the situation shown on fig. 3, where the observer r sends
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from a point A a light signal with a frequency vo which is received by r with
the frequency v and instantaneously reflected back. The reflected signal
returns to r at C with the frequency equal to Denoting by sA and sc the
corresponding proper times along r, we have

Since sc - s~ = + 0(p2), eliminating v from (5.28) and (5.29)
we get

Thus

where the r. h. side can be evaluated for sA or sc as well. Exactly the same
formula has been derived in a different way by Bertotti in [9].

If we replace (5.29), because of (5.27), by

we obtain from it and from (5.28) a new relation which also contains only
the second order effect

The concept of telescopic vectors implies thus a number of relations
between the curvature of space-time and the frequencies of light signals
exchanged between two freely falling observers. These relations can be
taken as a basis for idealized thought experiments meant to detect the curva-
ture of space-time. From a realistic point of view, however, these effects seem
to be beyond the reach of contemporary experimental technics. But still
they seem to look more promising than effects of the mechanical type.
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