The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 27 (1977) no. 1, pp. 31-60.
@article{AIHPA_1977__27_1_31_0,
     author = {Borchers, H. J.},
     title = {The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {31--60},
     publisher = {Gauthier-Villars},
     volume = {27},
     number = {1},
     year = {1977},
     mrnumber = {457777},
     zbl = {0376.32009},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1977__27_1_31_0/}
}
TY  - JOUR
AU  - Borchers, H. J.
TI  - The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1977
SP  - 31
EP  - 60
VL  - 27
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1977__27_1_31_0/
LA  - en
ID  - AIHPA_1977__27_1_31_0
ER  - 
%0 Journal Article
%A Borchers, H. J.
%T The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1977
%P 31-60
%V 27
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1977__27_1_31_0/
%G en
%F AIHPA_1977__27_1_31_0
Borchers, H. J. The generalized three circle - and other convexity theorems with application to the construction of envelopes of holomorphy. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 27 (1977) no. 1, pp. 31-60. http://www.numdam.org/item/AIHPA_1977__27_1_31_0/

[1] H.J. Borchers and J. Yngvason, Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points. Commun. Math. Phys., t. 47, 1976, p. 197. | MR | Zbl

[2] H. Bremermann, Ueber die Aequivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann., t. 128, 1954, p. 63. | MR | Zbl

[3] H. Bremermann, Complex convexity. Trans. Amer. Math. Soc., t. 82, 1956, p. 17. | MR | Zbl

[4] H. Bremermann, On the conjecture of the equivalence of pluri-subharmonic functions and the Hartogs functions. Math. Ann., t. 131, 1956, p. 76. | MR | Zbl

[5] H. Grauert und F. Fritsche, Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer, Berlin, Heidelberg, New York, 1974. | MR | Zbl

[6] L. Hörmander, An introduction to complex analysis in several variables. D. van Nostrand, Princeton, N. J., 1966. | MR | Zbl

[7] H. Meschkowski, Hilbertsche Räume mit Kernfunktionen. Springer, Berlin, Göttingen, Heidelberg, 1962. | MR | Zbl

[8] A. Pietsch, Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin, 1969. | MR | Zbl