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ABSTRACT. - The stress-energy-momentum tensor for thermally
conducting, viscous, compressible fluid with infinite electrical conductivity
and constant magnetic permeability is constructed. Several consequences
of the relativistic magnetohydrodynamic field equations are derived.
« Maxwell-like » equations for the gravitational field in a magnetofluid
are obtained and the expressions for the refractive index and the ray shear
of a null gravitational field are computed.

INTRODUCTION

The classical magnetohydrodynamics has been applied with conside-
rable success to the astronomical systems like magnetic variable stars,
sun-spots, and spiral arms [1]-[3]. However, on astronomical scale the

gravitational attractions far exceed electromagnetic attractions and repul-
sions. How to formulate a theory incorporating the intense gravitational
fields which are inevitably present in the astronomical system? Precisely
to meet this demand the theory of relativistic magnetohydrodynamics
(RMHD) has come into existence.
The genesis of RMHD is in Minkowski’s electrodynamics of moving

bodies. The significant contributions to RMHD are due to Coburn [4],
Taub [5] and Greenberg [6]. On giving an elegant account of the RMHD
field equations, Lichnerowicz [7] has established their existence and uni-
queness of solutions. His RMHD field equations are used by Yodzis [8] to
infer the magnetic effect in galactic cosmogony, gravitational collapse, and
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pulsar theory and by Date [9] to study the local behaviour of congruences
in self-gravitating magnetofluids. The solutions of Lichnerowicz’s field

equations are found by Date [70]-[77] and interpreted as a class of non-
uniform cosmological models filled with irrotational and shearfree thermo-
dynamical perfect fluid with infinite electrical conductivity and constant
magnetic permeability. Bray [l2] has obtained an exact solution of
Lichnerowicz’s RMHD field equations by ’assuming axial symmetry.
Moreover, he [l3]-[l4] has obtained Godel type of universes filled with
magnetofluid. Shaha [I S] has extended definite material schemes to

magnetohydrodynamics.
In this article, we propose to study the consequences of the RMHD

field equations by modifying the stress-energy-momentum tensor in
Ref. [7] for thermally conducting, viscous, compressible fluid with infinite
electrical conductivity and constant magnetic permeability. The field

equations (Einstein equations, Maxwell equations, equations connecting
thermodynamical variables) are used to study some consequences. Analo-
gous to the derivation of Maxwell equations for propagation of electro-
magnetic field in matter, « Maxwell-like » equations for gravitational
field in magnetofluid are derived by using the theory developed in
Ref. [16]-[21]. The behaviour of gravitational radiation in the universe
filled with magnetofluid is investigated and the propagation of a null

gravitational field is studied.
The purpose of this article is two fold (i ) it is of course of pure theoretical

interest to extend the theory of relativistic hydrodynamics to that of
RMHD (ii) it is observed that some astronomical objects like neutron
stars possess very strong magnetic field of the order 1012 - 1013 G and
very high electrical conductivity [22]. A thermally conducting, viscous,
compressible’ fluid with infinite electrical conductivity and constant

magnetic permeability befits theoretical considerations pertaining to

such astronomical objects.

1. PRELIMINARIES

1.1. Geometry

Arbitrary co-ordinates x" are used in a four-dimensional Riemannian
manifold V4. The metric is

where are the gravitational potentials. Signature of the metric is

( -, -, -, +). The time-like curves are

where at are Lagrangian co-ordinates of fluid element and s is a parameter
Annales de l’Institut Henri Poincaré - Section A
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along the world line. The unit 4-velocity vector tangential to the world-
line is

with Llxux = + I.

The space-metric or projection operator is

The covariant derivative of u03B1 is decomposed as

where the scalar 0 = is the expansion, u" = is the acceleration

vector, = M~) - u~"u~~ -= is the shear tensor and ~=M~j-~M~
is the rotation tensor. The vorticity vector is defined as

where is the Levi-Civita permutation tensor. The magnitudes of 
and are given by

Here semicolon indicates covariant differentiation, round brackets around
suffixes denote symmetrization and square brackets around suffixes denote
anti-symmetrization. Units are such that k, the gravitational constant
and c, the velocity of light are I.

The equation of a space-like curve is

where ’1i takes constant values for a particular curve and ç is the parameter
along the space-like curve. The unit vector tangent to the space-like curve
is given by

with = - 1.

The expansion parameter @ associated with space-like curve is defined
as

1.2. The stress-energy-momentum tensor of the fluid

A stress-energy-momentum tensor for a thermally conducting, viscous,
compressible fluid has a general form [21]
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where p is the matter energy density of the fluid, p is the isotropic pressure
of the fluid, v (~ 0) is the coefficient of shear viscosity and is the heat
flux vector.
The matter energy density p is connected with the proper matter density po

and the internal energy density E by [7] :

The equations connecting thermodynamical variables are

where T is the rest temperature, S is the specific entropy, S" is the entropy
flux vector and K is the heat conduction coefficient.

1.3. Stress-energy-momentum tensor of the magnetofluid

An asymmetric stress-energy-momentum tensor of electromagnetic
field was given by Minkowski [7] :

where is the skew symmetric electric field-magnetic induction tensor
and fda/J is the skew symmetric magnetic field-electric induction tensor.
The tensor T"~ in terms of the electric field vector e", the magnetic field

(em)

vector ~ the electric induction vector d", the magnetic induction vector bx
and the vectors vx, w" corresponding to energy flux and momentum flux
of the electromagnetic field respectively, is of the form

Under the assumptions of infinite electrical conductivity and constant

magnetic permeability reduces to [7].
(em)

where J1 is the constant magnetic permeability,

The total stress-energy-momentum tensor for thermally conducting,
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viscous, compressible fluid with infinite electrical conductivity and constant
magnetic permeability is the sum of and 

(m)

For thermodynamical perfect fluid with infinite electric conductivity and
constant magnetic permeability (v = qx - 0) we get Lichnerowicz’s [7]
tensor

1.4. The field equations

The field equations of relativistic magnetohydrodynamics are the

Einstein equations

where is given by ( 1 . 1 7) and the Maxwell equations

Remark. Taub [5] has derived the field equations for self-gravitating
charged fluid with constant electric permitivity and constant magnetic
permeability by using variational principle. His equations reduee to ( 1. 19)
and ( 1. 20) under the assumption of infinite electrical conductivity.

1.5. Free gravitational field

The Riemann curvature tensor can be algebraically separated
into the Ricci tensor and the Weyl tensor as

The Weyl tensor represents the free gravitational field. It can be decomposed
into « electric » and « magnetic » components [76]:
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satisfying the properties

The matter current is defined as [19].

2. THE MAXWELL EQUATIONS

We now study some consequences of the Maxwell equations ( 1. 20).
It is shown by Khade [23] that the equations ( 1 . 20) can be identified as
material transport laws. Magnetic field vector h" being space-like, it can
be written as

where nx is a unit space-like vector.

THEOREM 2. I. - Congruences of magnetic lines are expansion-free if
and only if the magnitude of the magnetic field conserves along the lines

. of’ _

From Maxwell equations (1 .20), we get

Contracting (2.2) with ua, we have

On substituting (2 . 1 ) and using ( 1. 8), equation (2 . 3) reduces to

Therefore, we must have

Thus, the proof of the theorem is complete.

THEOREM 2. 2. For a Born-rigid flow of the magnetofluid, the magnitude
of’ the magnetic field is conserved along the world-line.
On using the kinematical parameters associated with time-like con-

gruences, Maxwell equation (2.2) can be written in the form

Transvecting with (2.6) produces
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When the flow is Born-rigid =0=0), we get

Thus, the magnitude of the magnetic field vector is conserved along the
world line when 0 = 0.

THEOREM 2.3. - The magnetic field in the magnetofluid is divergence-
if and only if the acceleration and the magnetic field vector are ortho-

gonal to each other.

Since ux and hx are orthogonal, equation (2. 3) yields

Hence, we have

and the proof is complete.

3. HEAT TRANSFER EQUATION

From the equation of conservation T~~ = 0, we shall develop some
differential identities which govern the behaviour of the magnetofluid.
For magnetofluid characterized by (1.17), equation of conservation is

where n03B1 = n03B1;03B2u03B2 and  = 1/3n03B2;03B2 .
Contracting (3 . 1 ) by ux and Ppy and using Maxwell equations (1.20),
we get

It is interesting to observe that the same equation (3.2) holds true even
for thermally conducting, viscous, compressible fluid [21]. While in equa-
tion (3.3) magnetic field is explicitly present. On substituting equations
(1.10) and ( 1. 11 ) in equation (3 . 2) we get the heat transfer equation :
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If we assume that the matter density is conserved i. e. = 0, and
use ( 1 . 12) the heat transfer equation reduces to

where q 12 = - 
Thus, for thermally conducting, viscous, compressible magnetofluid

the entropy generation is always positive.
Remark (1). - It is to be noted that the magnetic field is not explicitly

present in the entropy generation equation. Moreover, the entropy genera-
tion is not only due to heat flux but also due to viscosity.
Remark (2). - It is shown by Date [24] that for variable magnetic permea-

bility, magnetic field is explicitly present in the heat transfer equation.
Remark (3). - For thermodynamical perfect fluid with infinite electric

conductivity and constant magnetic permeability, Lichnerowicz’s [7]
results can be recovered.

4. GRAVITATIONAL FIELD
IN PERFECT MAGNETOFLUID

For perfect magnetofluid (v = q° = 0) equations (3.2) and (3.3) reduce
to

where J- indicates projection by p«~ orthogonal to Only kinematical
parameters associated with time-like congruences appear in equations (4 . 1 )
and (4.2) are expansion and acceleration. In Szekeres’ [19] sense, these
equations represent the « inert part » of the gravitational field in the perfect
magnetofluid. The « active part » of the gravitational field in the perfect
magnetofluid can be found by observing the propagation of the free gravi-
tational field. This part occurs in the matter current J apy given by

Using the decompositions in ( 1 . 21 )-( 1 .23), the field equations analo-
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gous to Maxwell equations for the free gravitational field in perfect magneto-
fluid are as follows:

In absence of the magnetic field, equations (4.4) to (4.7) reduce to Haw-
king’s [18] equations for perfect fluid. Comparison with his equations
shows that the magnetic field on the right of the equations (4.4) to (4.7)
produces disturbance in the gravitational radiation. If the undisturbed
state is conformally flat = 0) then the equations (4.4) to (4. 7) become

For uniform magnetic field (~ == 0), these equations produce

When the equation of state is p = p(p), we get

Thus, for uniform magnetic field, the universe filled with perfect magneto-
fluid is spatially homogeneous and isotropic.
Vol. XXIV, n° 4 - 1976.
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5. PROPAGATION OF A NULL GRAVITATIONAL FIELD
IN A PERFECT MAGNETOFLUID

Following Szekeres [19], we write the tetrad in terms of a Vierbein

In a null gravitational field, we choose k°‘ pointing along the ray propaga-
tion. The Weyl tensor takes the form

where C is a real constant. The ray shear L and refraction ~ of the gravita-
tional field are of the forms

From equation (5. I) we have

On substituting equations (4.3), (5.1) to (5.3) in equations (5.4), (5.5)
we get
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In absence of the magnetic field, from equations (5.6) and (5 . 7) we get the
following equations, as found by Kundt and Trumper [17] :

Moreover, we observe that due to magnetic field, the expressions for E
and dt are not explicit as in equations (5.8) and (5.9) and a pure null wave
does not propagate along shear-free null geodesics even if the magneto-
fluid is non-rotating and non-shearing.
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