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Spectral and scattering theory
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Ann. Inst. Henri Poincaré,

Vol. XXIV, n° 1, 1976,

Section A :

Physique théorique.

ABSTRACT. - We consider the Schrodinger operator in with

potential V = V.W where W is a reallRn valued function such that (1) the
local singularities of W2 are controlled in a suitable sense by the kinetic
energy, (2) W tends to zero at infinity faster than r-1. We define the Hamil-
tonian by a method of quadratic forms and derive the usual results of
scattering theory: the negative spectrum is discrete and finite, the absolutely
continuous spectrum is [0, oo), the continuous singular spectrum is empty,
the wave operators exist and are asymptotically complete.

1. INTRODUCTION

The spectral and scattering theory of the Schrodinger operator
H = Ho + V, where Ho = - A is the Laplacian in ~" and V a real potential,
has reached a very satisfactory state for a large class of potentials (See
for instance [l4] or the lectures by Amrein in [4] and the references therein
quoted). Under suitable and general assumptions on V, one can prove
some or all of the following properties:

( 1 ) H is defined as a self-adjoint operator in ~f = with a reaso-
nable degree of uniqueness.

(*) Laboratoire associe au Centre National de la Recherche Scientique.
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18 M. COMBESCURE AND J. GINIBRE

(2) The essential spectrum 6e(H) of H is the positive real axis.
(3) The (negative) discrete spectrum of H is finite.

(4) The positive point spectrum 0’ p(H) is empty.
(5) The continuous singular spectrum is empty.
(6) The wave operators SZ± exist as strong limits :

(7) The wave operators are asymptotically complete, i. e.

where is the subspace of absolute continuity of H.
In a large number of works on the subject, the results are derived under

assumptions on V that involve only its absolute value 1 V I. Typically,
(I) follows from some local regularity condition, (2) from the condition
that 1 V tends to zero when r = 1 x tends to infinity, (3) from the condition
that V ) tends to zero at infinity faster than r - 2, and (4) to (7) from the
condition that 1 V tends to zero at infinity faster than r’ ~. Some of these
results have been extended to other classes of potentials, including long
range but non oscillating potentials [2] [l4] [8], very singular but predomi-
nantly repulsive potentials [11] [20] [23] or very singular attractive poten-
tials [3] [76].

It is only recently however that the same problems were considered
for potentials that may have very large and possibly very singular positive
and negative parts, in particular that may oscillate wildly, but for which
important cancellations occur between positive and negative parts [5]
[15] [17] [24]. The main point that emerges from these investigations is

that the results listed under (I) to (7) carry over to potentials V that are
in some sense the derivatives of some function W such that W satisfies

conditions similar to those imposed on V 1 in previous investigations.
In [24], Skriganov considers the n-dimensional case with potentials that
are locally regular, but may have large oscillations at infinity. For these

potentials, he derives the results (1) to (7) by appealing either to results
on partial differential equations or drawing upon the classical work of
Ikebe [7]. In [5], Baeteman and Chadan derive the same results for radial

potentials with W locally integrable and decreasing faster than r-1 
1 at

infinity.
In the present paper, we extend most of the results of [5] and [24] to

the n-dimensional case with potentials V such that

(a) W may be locally singular, its singularities being controlled in a
suitable sense by the kinetic energy.

(b) W decreases faster than r-1 at infinity in a suitable sense. We then
derive properties ( 1) to (7) (except for (4)) by standard Hilbert space methods.
In particular, we use the method of Birman [6] and Schwinger [21] to
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19SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

prove (3), the method of Agmon [1] based on a priori estimates in weighted
Hilbert spaces to prove (5), and the method of Kato [10] and Lavine [13]
using smooth operators to prove (6) and (7).
The paper is organized as follows. In section (2) we introduce various

definitions and notations, define the Hamiltonian by a method of quadratic
forms, and show that c [0, 00). In section (3) we prove the finiteness
of the discrete spectrum. In section (4) we derive properties (5), (6) and (7).
The assumptions on W are slightly different from section to section and
will be stated when needed.

2. THE HAMILTONIAN

AND ITS ESSENTIAL SPECTRUM

We consider the operator H = Ho + V in 1%9 = where Ho= -A
and V is a real potential to be specified below. We shall need the space
~ = 0 en of square integrable functions from (~n to Cn. We shall
denote by ~ . ~ and the norm and scalar product both in Je and ~
Which one occurs will be clear from the context. In all that follows, we
denote by W a real measurable function from fR" to M". Multiplication
by W defines an operator from eYe to ~, also denoted by W. Similarly,
we denote by V the operator cP - from Je to eYe. Multiplication by

n

the real measurable function W2 = L WJ defines a self-adjoint positive
j= 1

operator in Jf, also denoted by W2. We recall that there is a one-to-one
correspondence between positive self-adjoint operators and closed positive
quadratic forms, such that the domain of the closed form associated with
the operator A is ([9], chap. VI). This domain will be called the
form domain of A and will be denoted Q(A). We shall in general use the
same notation for the operator and the associated quadratic form.

n

We want to define the potential V formally by V = V.W = 
We need the following lemma. j= 1

LEMMA 2.1. - Suppose that:

as quadratic forms on Q(Ho), with b &#x3E;_ 0 and a &#x3E;_ 0. Then the equation

defines a quadratic form V with domain Q(Ho), and this form satisfies:

Vol. XXIV, n° 1 -1976.



20 M. COMBESCURE AND J. GINIBRE

Proof: The first statement is obvious. The inequality (2.3) follows
from the estimate

We assume from now on that W satisfies (2 .1 ) for some a  1. It follows

from (2.3) that H = Ho + V can be defined by the sum of the quadratic
forms by a well-known perturbation method. (See [22], theorem II.7,
p. 41). In particular, H is self-adjoint semi-bounded, and Q(H) = Q(Ho).

REMARK 2.1. - One can consider that the potential V is defined by
V = V. W in the sense of distributions. The previous method can therefore
accommodate potentials that are not functions. For instance for n = 1,
with W(x) = x/2 ~ x t, one obtains V = 5(x).
On the other hand, the present situation covers cases of highly singular

oscillating potentials, both locally and at infinity. We give two examples
that satisfy all the assumptions made in the rest of the paper (Here B is any
strictly positive number).

REMARK 2.2. - One can easily give sufficient conditions on W to ensure
that (2 .1 ) holds with a  1. For instance it is sufficient that We 

with uniform bound:

with M not depending on x and with p = 2 for n = I, p &#x3E; 2 for n = 2

and p = n for n &#x3E;_ 3. Since for any n the condition We with uni-

form bound is necessary, the previous condition is necessary and sufficient
for n = 1.

For n = 3, the condition can be weakened to a local Rollnik condi-

tion (see [22]) with uniform bound :

with M’ independent of x..
For future use we also define

Annales de l’Institut Henri Poincaré - Section A



21SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

Clearly under the assumption (2.1), Hi 1 is defined as a quadratic form
with domain Q(Ho) and is positive. Furthermore

The form H 1 satisfies the following estimates.

LEMMA 2.2. - Let W satisfy (2.1) with a  1. Then, as quadratic forms
on Q(Ho), Ho, Ht i and W2 satisfy:

Proojl Let a &#x3E; 0. It follows from

that

Therefore

From this and from (2 .1 ), it follows by elimination of W2 that for 2a &#x3E; 1 :

Taking for a the optimal value a = a - I yields (2.9).
The inequality (2.8) is proved similarly by eliminating Ho.
It follows from lemma 2 . 2 that the quadratic form H with domain Q(Ho)

is closed, and therefore defines a positive self-adjoint operator with form
domain Q(Hi) = Q(Ho). Furthermore, because of (2 . 8), H can equivalently
be defined as the sum of quadratic forms (2.7) by the same perturbation
argument that was used to define it as Ho + V.
We now turn to the study of the essential spectrum of H. We introduce

the resolvent operators Ri(~,) = (Hi - ~,)-1, where i stands for 0, 1 or

nothing. In terms of these operators, condition (2 . 1 ) with a  1 states
that the operator WRo(~)W acting in Yf is bounded with norm less than 1/4
for £ real negative sufficiently large. In order to obtain interesting results
on the essential spectrum of H, we shall assume in addition that this operator
is compact for some À  0, or equivalently for all À in the resolvent set
CB[0, oo) of Ho. One sees easily that this assumption implies that

tends to zero when Re ~, --~ - oo, and therefore implies (2.1),
where moreover a can be taken arbitrarily small by taking b sufficiently
large.

PROPOSITION 2.1. - Let W be such that WRo(~)W is compact for some
À  0. Then ~e(H) c [0, oo).

Vol. XXIV, n° 1 - 1976.



22 M. COMBESCURE AND J. GINIBRE

Proof. The proof uses standard methods and will only be sketched
briefly. One first considers the operator WR1 (À)W.
LEMMA 2. 3. - Let W satisfy the assumption of proposition 2.1. Then

the operator WR1(À)W is bounded, compact and analytic in A for
À E CB[O, oo ). Moreover ~WR1(03BB)W~ ~ 0 when Re 03BB ~ - 00.

Proof of lemma 2.3. - As in the case of the operator WRo(~)W, the
second statement follows from the first and it suffices to establish compact-
ness for some  0. Now from lemma 2.2, one obtains

for some c &#x3E; 0, d ~ 0. Therefore

for £  - cd. The last member of (2.10) is compact by assumption, and
therefore the second member is compact by lemma 2.4 below.

LEMMA 2.4. - Let A and B be self-adjoint operators with 0  A  B
and B compact. Then A is compact.

Proof of lemma 2.4. - Let P be a finite rank spectral projector of B
satisfying BP = PB and II ( 1 - P)B II  B.

Then 
1111   t~B ) ~ n /1 T~n /1 1 ~- ~

Furthermore, for all ~p and ~ :

so that

Therefore

Therefore A is the norm limit of finite rank operators, and is therefore

compact

End of the proof of proposition 2.1.
From the fact that I ‘ - 0 for Re ~, -~ - 00, and from

elementary algebra, it follows that for Re A negative and sufficiently large

where the operator (1 - WR1(À)W)-1 is defined by a (norm convergent)
power series, and where both members are analytic in ~. Since WR1(À)W
is compact and analytic in A for all À E CB[0, oo ), it follows from the analytic
Fredholm theorem (see [18], p. 201 ) thaTthe RHS of (2 .11 ) is meromorphic
there with compact residues. From this it follows that 0’ e(H) c [0, oo ).

REMARK 2.3. - One can easily give sufficient conditions on W that

Annales de l’lnstitut Henri Poincaré - Section A



23SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

ensure compactness of for £  0. For instance it is sufficient
that W E for the same p (depending on n) as in remark 2.2, and
that W satisfies the estimate (2.4) where in addition m(x) tends to zero
when r - oo. For n = 3, this condition can be weakened to a local Rollnik
condition with uniform estimate (2.5), where in addition m’(x) tends to
zero when r - oo .

3. FINITENESS OF THE DISCRETE SPECTRUM

We have seen in section 2 that under suitable assumptions the essential
spectrum of H is contained in [0, oo) so that the negative spectrum is
discrete. In this section we prove that if in addition W tends to zero at

infinity faster than r-1, then the discrete spectrum is finite (in physical
terms: H has a finite number of negative energy bound states). This is the
extension to the present situation of the argument of Birman and Schwinger,
which proves the finiteness of the discrete spectrum for ordinary poten-
tials V that decrease faster than r- 2 at infinity. In order to formulate the
result, we need an additional assumption and definition. We shall assume
that there exists a locally integrable function U(x) such that W = VU in
the sense of distributions, so that V = ~U. Then:

PROPOSITION 3.1. - Let W = VU, assume that U is a bounded function
and that the operator WRo(0)W is compact. Then H has only a finite
number of negative eigenvalues (including À = 0 with its multiplicity).

REMARK 3.1. - From lemma 2.4 and the inequality

for all ~,  0, it follows that compactness of WRo(0)W is a stronger assump-
tion than that of proposition 2.1.

REMARK 3.2. - For n &#x3E;_ 3, one can easily give sufficient conditions
on W to ensure compactness of WRo(0)W. For instance, it is sufficient
that W E For n = 3, this can be weakened to the condition that W2
belongs to the Rollnik class ~, in which case WRo(0)W is moreover a
Hilbert-Schmidt operator. Alternative but similar conditions have been

given by Birman [6]. For n = 1 or n = 2, WRo(0)W is not bounded in
general, and a j’ortiori not ,compact, even for smooth W with compact
support (See however note added in proof).
Proof of proposition 3. l. The proof is similar to that of Schwinger

for ordinary potentials and will only be sketched briefly. (See [22], p. 86
for details). We consider the eigenvalue problem

for 0  g  1, ~ E Q(Ho) and À  0.

. 
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24 M. COMBESCURE AND J. GINIBRE

It follows from the mini-max principle that the eigenvalues A are conti-
nuous and strictly decreasing functions of g. From this it follows that
the number N(A) of eigenvalues of H smaller than or equal to ~,, each
counted with its multiplicity, is equal to the number of values of g in the
interval (0, 1] such that (3.2) has a solution. Now (3.2) is equivalent to

where cp = E 115. Therefore N(/L) is equal to the number of eigenvalues
of WR1(À)W greater than or equal to one. Since

this is smaller than the number of eigenvalues of greater than
or equal to one, which is finite provided we can show that is

compact. Now 
rwcm r~ ~B

Since U is bounded is bounded. Since U is bounded below,

Therefore WRI(0)W is compact by lemma 2 . 4.
Therefore the number of strictly negative eigenvalues is finite. The

inclusion of the eigenvalue À = 0 with its multiplicity follows from the
fact that solutions of the equation (H 1 - W2).p = 0 give rise to solutions
of the equation -_ __ _ __ _ _ _,

The assumption that U is bounded in proposition 3.1 seems unnatural,
In fact, we describe below a special case where it is not needed, namely
that of dimension n = 3 with W2 satisfying the Rollnik condition.

PROPOSITION 3 . 2. - Let n = 3 and with - 

,

Then the number N of (strictly) negative eigenvalues of H (with their
multiplicities) is finite, and bounded by

Proo~ f: We now consider the eigenvalue problem

for 0  g  1, ~ E Q(Ho) and À  0. By the same argument as above,
N(A) is equal to the number of values ot g m me interval (0, 1] for which (3.10)
has a solution. Now (3.10) is equivalent to the equation

Annales de l’Institut Henri Poincaré - Section A



25SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

where 0 = wi 1 = V~, ~2 = W~ and A is the ope-
rator :

Therefore N(~,) is smaller than the number of eigenvalues of A(~,) in [1, oo).
Now for any ~,  0, one sees easily that A(~,)Z is compact and that A(~,)3
is a Hilbert-Schmidt operator. Therefore

An elementary but tedious computation yields :

This is bounded uniformly in À for ~, _ 0, which proves proposition 3.2.

4. POSITIVE SPECTRUM AND SCATTERING THEORY

In this section, we shall derive the properties listed under (5), (6) and (7)
in the introduction, and complete the proof of (2). We use the method of
Agmon based on a priori estimates in weighted Hilbert spaces to prove
property (5). Properties (6) and (7) follow easily by the method of smooth
operators of Kato and Lavine. Since all these methods apply to the present
case with very few modifications, the exposition will be sketchy and some
of the proofs will be omitted. The reader is referred to [19], chap. XIII for
details.

Let a and p be real numbers. We define the following auxiliary Hilbert
spaces

and

We recall that ( denotes the norm in ~ = 
We now state the results.

PROPOSITION 4.1. - Let a &#x3E; 1/2 and suppose that the operator

is compact. Then:

( 1 ) The positive point spectrum of H is a discrete subset 8 of (0, oo )
(with possibly 0 as an accumulation point), and is bounded’ above. Each
eigenvalue has finite multiplicity.

(2) The continuous singular spectrum is empty 0.
(3) For any compact subinterval [a, b] c (0, 00 )B8, the operator R(~,)

Vol. XXIV, n° 1 - 1976.



26 M. COMBESCURE AND J. GINIBRE

is a bounded operator from 
1 to with norm uniformly bounded

in À for a _ Re ~ ~ b.

(4) The wave operators as defined by ( 1.1 ) exist and are asymptotically
complete in the sense of ( 1. 2). The absolutely continuous spectrum of H
is [0, oo ).

Proof. - The main point of the proof is to get a sufficient control of R(À)
for real positive h. The free resolvent satisfies the following properties.

LEMMA 4.1. - Let a &#x3E; 1/2. Then :

( 1 ) Ro(/L) is a bounded operator from to with norm uniformly
bounded in 03BB for 0  a ~ Re A  b.

(2) As an operator from Jfa.-l 1 to RoM is norm continuous in
~ for ~ 0.

Proof. See [19]
We now turn to R(A). The potential V can be written as

where

A and B are operators from :Yf to :Yf, A* and B* from 3i to We want

to construct R(A) as

or equivalently

and

is an operator in 1%Y 
The key of the proof is the following property.

LEMMA 4 . 2. - A is a bounded operator from to :ft. B is a compact

operator from to 3fl..

Proof - We first consider A. Let Then

Annales de l’Institut Henri Poincaré - Section A



27SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

where the factor in the square bracket is the Laplacian of the function
(1 + ~-a/2 and where we have used the identity

It follows immediately from (4.8) that

for some constant c.
We next consider B. Let Then

The operator in the first bracket is compact by assumption, while that in
the second bracket maps R1-03B1 onto 9V unitarily. This completes the proof.
Combining lemmas 4.1 and 4.2, we obtain the following properties

of F(~). We denote by C the closed cut plane, i. e. the complex plane cut
along [0, oo), including the cut counted twice. Then :

LEMMA 4 . 3.

(I) F(A) is a bounded operator in and is norm continuous
in h for £ E CB{ 0}. Its norm is bounded uniformly in h on the compact
subsets of ~~~ 0 }.

(2) F(~,) is analytic in À for ~, E ~~[0, oo ).
(3) F2 is compact for all À E CB{ 0 } and !! F(),,)2 II - 0 when I À I - oo.

We can then apply the analytic Fredholm theorem ([18], p. 201) to
invert the operator 1 + F(/L):

LEMMA 4.4. - Let F c [0, oo) be the set of positive for which the
homogeneous equation

[’~ + F(~)]~ _ ~ (4.12)

has a solution in :Yf 3 ~. Then
bounded closed set of Lebesgue measure zero.

(2) For any compact subinterval [a, b] c (0, oo )~~, R(~,) is a bounded

operator from Yfa- 1 to with norm uniformly bounded in À for

REMARK 4. 1 AND PROOF OF PROPOSITION 4. 1 .4. - Except for the addi-
tional information contained in propositions 4.1.1 and 4.1. 2, lemma 4. 4. 2
is proposition 4.1. 3. Propositions 4.1 .1 1 and 4.1.2 will be proved below.
At the present stage, we already obtain the statement of lemma 4.4.1
from a general result of Kuroda ([12], see also [22], p. 127). As a consequence,
we are already in a position to prove proposition 4.1.4. Indeed it follows
from lemmas 4.1.1 and 4.2 that A and B are Ho-smooth in the sense
of Kato [10] and Lavine [13] on any interval [a, b] c (0, oo ). It follows
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from lemmas 4.2 and 4.4.2 that A and B are H-smooth on any interval
[a, b] c (0, and from lemma 4.4.1 that the absolutely continuous
spectrum of H is exhausted by a denumerable union of such intervals.
This implies proposition 4.1.4.

It remains to prove propositions 4.1.1 and 4.1.2. One first shows
that solutions of the homogeneous equation (4.12) are such that the
Fourier transform + B*({J2 vanishes on the energy shell. Let "denote
the Fourier transform and k the momentum variable. Then:

LEMMA 4 . 5. - be a solution of (4.12)
with À. &#x3E; 0. Then

by the continuity of F(2). Therefore

Taking the imaginary part, we obtain

Now by lemma 4.2, + E 1. From this it follows that the
restriction of its Fourier transform to the sphere = { k : k2 = ~} in
momentum space belongs to and is Holder-continuous in norm as
a function of À. [1] [19]. Therefore (4.13) is meaningful and follows immedia-
tely from (4.14).
The end of the proof of propositions 4.1.1 1 and 4.1.2 is identical with

Agmon’s for ordinary potentials and will be omitted.

REMARK 4. 2. - From remarks 2 . 2 and 2. 3, one easily obtains sufficient
conditions on W to imply the assumption of proposition 4.1. For instance
one can take W(I + r2)&#x26; E with uniform bound, with the same
values of p as in remark 2. 2 and with 6 &#x3E; a. Intuitively, this means that W
should tend to zero at infinity faster than r-1.

ACKNOWLEDGMENTS

We are grateful to M. L. Baeteman and K. Chadan for communicating
their results prior to publication, and especially to K. Chadan for several
stimulating discussions.

Annales de l’Institut Henri Poincaré - Section A



29SPECTRAL AND SCATTERING THEORY FOR THE SCHRODINGER OPERATOR

Note added in Droof’

(1) Although WRo(0)W is not bounded for n = 1 or n = 2, finiteness
of the discrete spectrum still holds in these cases under the following
assumptions :

The proof is obtained by a straightforward modification of that of
proposition 3 . t

(2) Potentials of the type studied in this paper have also been considered
by Schechter [25] [26]. In particular it is proved in [25] that o~(H) = [0, oo ),
and in [26] that the wave operators exist and are asymptotically complete.
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