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Physique théorique.

ABSTRACT. - Axioms for Euclidean (Bose) Fields are proposed and
shown to suffice for the reconstruction of Relativistic Quantum Fields
satisfying the Wightman Axioms. Those axioms are verified for a class
of models. They seem to provide a suitable framework for (Bose)
Field Théories in Two and three space-time dimensions. It is shown that
the P(03C6)2-interacting field in the infinité volume limit is not a (generalized)
free field or a wick polynomial of a (generalized) free field. If P1 and P2
are two interaction polynomials in the région of convergence of the Glimm-
Jaffe-Spencer Cluster Expansion then the corresponding infinite volume
field théories are différent, unless P1(~) = P2( ± ~ + a) + b.

In this paper we présent a simple and short vérification of the Wightman
axioms [7~] [40] for a class of P(rp)2 quantum field models with so-called
haif-Dirichtet boundary conditions and arbitrarily large coupling
constant.

(*) Supported in part by the National Science Foundation under Grant GP-40354 X.
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272 J. FRÔHLICH

Thèse models have been intensively studied from the point of view of
Euclidean Field Theory by Guerra, Rosen and Simon [14] [15] [16] [37],
by Nelson [23] [26] and in [6] [7]. Under différent conditions but also
from the Euclidean point of view they have been studied by Glimm, Jaffe
and Spencer in [12] [13] which from the point of view of physics are the
most important investigations.

In fact, it seems to be hard to contribute results of some importance
which go beyond the masterful investigations contained in Refs [12]
[13] [15] [16] [23] [26] [37]. Nevertheless this paper might have a legitimate
motivation : It présents a rather short, simple and reasonably self-contained
vérification of the Wightman axioms [7~] [40] for with (haïf-)
Dirichlet boundary conditions which does not involve any sophisticated
analysis.

It is tempting to think of thèse axioms as being ideas in the gréât Pla-
tonic sky of ideas and therefore it seems to be justified to describe a short
and easy way to find the shadows of thèse ideas in the hard world of
models (*). The way we want to describe hère consists of the following
three parts (Sections 1-3): 

-

In Section 1 we formulate three axioms (Axioms A, B, C) for Euclidean
fields in terms of a functional J on the Schwartz space !/ = 
which is called the generating functional of the Schwinger functions [6].
The spirit of Axiom A is the one of Symanzik and Nelson [24] [41 ] :

It guarantees the existence and covariance of Euclidean fields over G.
Axiom B is a rather obvious translation of the Osterwalder-Schrader
positivity condition (29] [30] [37] ] into the language of the generating
functional J (See also [17].) Axiom C is motivated by results proven in [6].
It yields the existence of sharp-time fields and a bound on the (time 0 -)
fields in terms of the quantum field Hamiltonian obtained from Axioms A
and B.

In Section 2 we prove theorems which allow for the reconstruction of
relativistic quantum fields from the generating functional J which satisfy
the Wightman axioms. We also présent a theorem which connects

Axioms A, B, and C with Nelson’s axioms [24]. Some of the difficult steps
in the reconstruction of relativistic quantum fields are of course due to
Osterwalder and Schrader [29] [30] [37] ] and Nelson [24] and there we
just outline the simple modifications of their arguments which account
for the différent starting point of this paper.

In Section 3 we verify the axioms of Section 1 for the models
using only some of the simplest, yet most elegant results of [6] [7J] [16].

In Section 4 we study the uniqueness of the « Euclidean » and the phy-

(*) [We apologize for the abuse of Platonic philosophy made hère.]
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273VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

sical vacuum. We continue our analysis of the properties of the P(~p)2
infinité volume interacting measures started in (7]. We show that thèse
measures are différent from Gaussian measures if degree P &#x3E; 2. This

proves that the infinité volume interacting fields in the P(~p)2 models are
not free fields (They are not even Wick polynomials of free or generalized
free fields). It is a!so proven that under certain conditions the infinité volume
interacting measures associated with polynomials P 2’ respectively
are mutually singular unless P1 - P2 and physically différent unless

P~)=P2(±~+~)+~.
The représentations of the (time 0 -) Weyl relations are investigated

and found to be disjoint from Fock représentations if degree P &#x3E; 2. Our

results prove the non-existence of the interaction picture in the P(~p)2
models (Haag’s theorem [l8] [40]).

SECTION 1

AXIOMS FOR EUCLIDEAN FIELDS

We consider Euclidean fields over a d-dimensional space-time. For
the saké of concreteness and because of our applications in Sections 3
and 4 we set d = 2 and we only consider the case of one neutral, scalar
Bose field. The results of Sections 1 and 2 do not dépend on the value of d
and generalizations to arbitrary Bose fields (and, mutatis mutandis, Fermi
fields [28] [29] [30]) can be given. We hope that the axioms proposed in
this section are realistic for d = 2, 3.

Recat) l the following definitions : .

The real Schwartz space over [R2 is denoted by !/ (== ([R2» and ~’
dénotes its dual. Points in [R2 are denoted by ~ = ( x,r ). Eléments of
the Euclidean group E(2) are denoted éléments of the « time »-trans-
lation subgroup by -r or t and « time »-reflection by. For f in ~ we set

We define a closed subspace !/ + of !/ by

AXIOM A (Existence o_f’ Euclidean Fields over !/). - There exists a
.fûnctional J such that

A 1 ) J is normalized, i. e. J(o) = 1.

A2) J is continuous in the Schwartz space topology.
A3) J is of positive type ( Nelson-Symanzik positive [20] [24] [41]), i. e.

Vol. XXI, n° 4 - 1974.



274 J. FRÔHLICH

given arbirrary complex numbers cl’ ... , cn and test functions f i , ..., fn
in !/ then

A4) J is real, i. e. J(f) = 1(=7)
AS) J is « time-translation » and « time-reflection » invariant, i. e.

A6) J is Euclidean invariant.
Obviously A5) is a special case of A6) and is stated separately for later

purposes.

THEOREM 1 (Minlos [20], « reconstruction of Euclidean fields from J »).
- There exists a Euclidean invariant probability measure v on the 6-algebra
generated by the Borel cylinder sets of ~’ such that

The measure v determines a Hilbert space Kv - L2(!/’, dv) and the Bannch
spaces LP(!/’, dv), 1 ~ p  
The fixed, À. }, where

.form a strongly continuous, unitary group on Kv with sel fadjoint (s. a. )
infinitesimal generator 03A6(f), (called the Euclidean field, smeared with test
function f in !/ ).

Remarks. The function 1 identically 1 on ~’, denoted also by Q, is
a normalized vector in %" which is cyclic for the * algebra generated
by the operators {ei03A6(f) |f~ 9’}. It is called the « Euclidean vacuum ».
There exists a strongly continuous, unitary representation T of E(2) on ~’~
such that

for all j3 in E(2) (The dual mapping of T03B2 also denoted by T03B2 is an auto-
morphism of the underlying G-algebra, generated by the Borel cylinder
sets of ~’).

AXIOM B (Osterwalder-Schrader positivity). - The functional J is

positive in the sense of Osterwalder and Schrader, i. e. given arbitrary complex
numbers cl , ... , en and test functions f1 , ... , f" 

Annales de l’Institut Henri Poincaré - Section A



275VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

(such an axiom has also been proposed in [17]. It is the natural translation
of Osterwalder-Schrader positivity [29] [30] [31]’ in a probabilistic frame-
work).

AXIOM C (Exponential J-bound and 62-bound). - C1) The function
J(~~~ .f 1 + ~2.Î2) (fôr arbitrary fixed fl and f 2 in !/) is once continuously
differentiable in )"1 and 03BB2 and

isjointly continuous in f1 andf2 in rhe Schwartz space topology. The tempered
distribution Q bt 1, h2 p 03B4t2), where h1 i and h2 are in !/1 == Greal ([RI),
is a bounded, measurable function of’ t 1 and t2 in some (arbitrarily small)
open neighbourhood oJ’ t 1 - t2 .

C2) ~’here exists a real function g in with the properries

such that for

where h is an arbitrary real.function with the property that /// h 1 fôr
some norm /// . /// which is continuous on G1, and some finite constant c.

1 n terms the measure v 1. 8) states that the Laplace transforms

are bounded by 
Remarks. - Axiom B yields the construction of a physical Hilbert

space and a positive selfadjoint Hamiltonian H on % w with a ground-
state Q (called physical vacuum and notationally not distinguished from
the « Euclidean vacuum »). This construction is due to Osterwalder and
Schrader [29] [30] (31 ].
Axiom Cl) implies that (time 0--) quantum fields in !/1’ exist

and are selfadjoint on some dense domain in containing
the physical vacuum Q.
Axiom C2) implies that in the sensé of densely defined quadratic forms

for some finite, positive constant c’.

Inequality (1.9) allows for the construction of Wightman distributions
which can be shown to obey Wightman’s axioms; (Poincaré invariance
follows from the Euclidean invariance of J by arguments due to Nel-
son [24] [29] [30]~.

Vol. XXI, n° 4 - 1974.



276 J. FRÔHUCH

SECTION 2

THE RECONSTRUCTION
OF RELATIVISTIC QUANTUM FIELDS

FROM THE GENERATING FUNCTIONAL J

In this section we outline the reconstruction of relativistic quantum
fields from a functional J satisfying Axioms A, B, and C. Following closely
Osterwalder and Schrader [29] [30] [31 ] we first construct the physical
Hilbert-space Kw and the Hamiltonian H. We then construct the (time 0-)
quantum field rp and we prove that in the sensé of quadratic forms on

~w the field ~p (smeared with a suitable test function) is bounded
by the Hamiltonian H. This permits us to reconstruct the functional J
and the Schwinger functions from the (time 0 - ) field cp and the Hamil-
tonian. The analytic continuation of the Schwinger functions in the time
variables to real times can then be done as shown by’ Nelson [24] (and
Osterwalder and Schrader [29] [30] [31 ]).

Step 1. Construction of thé Physical Hilbert Space.

DEFINITIONS. 2014 We let dénote the von Neumann algebras generated
by the operators { e‘~~r~ ~ f E ~+ }, { e‘~~~~ ~ f$E ~+ }, respectively, on the
Hilbert space Let 0 == T 3 dénote the unitary « time »-reflection ope-
rator on obtained in Theorem 1. The spaces are defined to be
the closed subspaces {F03A9| 1 F E 9Jl",:t } - of and dénote the

orthogonal projections onto jf~ ~. We dénote the scalar product on
~’y - LZ(~., dv) by .,.&#x3E;.
We let L + dénote the linear space { m ! F~ Mv,+} and equip L+ with

a new inner product :

for arbitrary F and G in ~ + .

Let F = c~~’B where c 1, ... , cn are arbitrary complex numbers
t= i

and ,f 1, ...,/~ are arbitrary test functions in ~+. Then

Annales de l’Institut Henri Poincaré - Section A



277VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

This proves that (.,.)9’ + is positive semi-definite. Moreover

i. e. the topology defined by on is finer than the one defined

by (., .)~ + on {9Jlv, +0 }.
Let ~V’+ + be the kernel of the inner product ( . , . )~ ~ in J~ +. We define 

to be the completion of ~+/~V’+ in the inner product ( . , . )~ + and ( . , . ) to

be the induced scalar product on Jfw Let G be in +. The equivalence
class determined by GO with respect to the kernel .~V’+ of the inner pro-
duct (., .)~ + is denoted by v(G), i. e. for each G in dénotes the

corresponding vector in 

Step 2. Construction of the Hamiltonian.

We define a semigroup 1 &#x3E;: 0 } by

which is obviously continuous in t and bounded 
It follows from arguments of Osterwalder and Schrader [29] [30] [~7] ]
that Vr leaves the kernel ~+ invariant, Vt is uniformly bounded in t on

~ t &#x3E;_ 0} and Vt is symmetric with respect to (.,.).2’ + for all t ~ 0.

Therefore {Vt| t &#x3E; 0} détermines uniquely a selfadjoint contraction
semigroup { Vt| t ~ 0 } on Because of (2.4) and Axiom A this semi-

group is weakly continuous in t on ’~w
We set Q : = v(l) and call it the physical vacuum; (it is not distinguished

explicitly from the Euclidean vacuum Q = I).

LEMMA 2.1. - The semigroup {Vt|t ~ 0} leaves Q invariant. The

infinitesimal generator Vt| 1 ~ 0 } is a positive, selfadjoint operator
on Jfw The semigroup { Vt| 1 ~ 0 } is positivity preserving in 
ing sense:

Let C be the closure of { v(F) | F ~ 0, F E L2(!/’, dv), F affiliated with + }
in the scalar product ( . , . ). Then for 03C8 1 and C

Proof. - The first part of the lemma is obvious. Let us prove the second

part. We let F and G be positive functions in L2(!/’, dv) which are affiliated
with Then

But 8G and are obviously positive functions in L2(!/’, dv). Hence
(v(G), is non-négative for 0. Q. E. D.

Vol.XX!,n°4-1974.



278 J. FRÔHLICH

Step 3. Construction of the (time 0-) Quantum Field.

By Axiom Cl) the so-called two point Schwinger function 62(~, 11)
exists and is a (translation-invariant) tempered distribution. Following
Osterwalder and Schrader [29] [30] [31 ] one can now show (using steps 1

and 2) that for T --_ t2 - t 1 &#x3E; 0 the distribution

is real analytic in ’te Moreover for is decreasing in ’t on [0, oo).
By Axiom Cl) G- ! is bounded in some open neighborhood of z = 0.

Hence

By the commutativity of the Euclidean fields (Axiom A and Theorem 1 )
C~2(~f; g~ - 6~(~,/) for all f and g in ~. This property and continuity

, , ~ , _

Therefore for a test function h in ~1 Gh,~,(2) is a bounded, uniformly conti-
nuous function of t on [R.

Then f ôr all h in [/1 and all real À.

exists on Jfy and defines a strongly continuous unitary group in A. Moreover n
is in the domain 0 £55),

/or some , Schwartz space , , ,

Proof - Obviously {Xn,s }~n= l c !/1 and ~ 03B4s, as n ~ oo, weakly
on continuous functions on !R. Since the Euclidean vacuum Q is cyclic
and separating for the operators { e‘~tf ~ j f E ~ ~, it suffices to prove
that = o, as n, n’ -~ oo. Using
Duhamel’s formula, the commutativity of Euclidean fields and the Schwartz
inequality we obtain

Annales de l’Institut Henri Poincaré - Section A



279VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

which obviously tends to 0, as n, n’ -~ oo, since r’) is jointly
continuous in t and t’.

Obviously this result also implies that

and

By Axiom C I ) is a continuous, bilinear
functional in h and h’ on !/1 x !/1’ for fixed n  oo. Also it converges
to  Q, ~~h Q9 ~S)~h’ Q9 5s)Q &#x3E; which therefore is a continuous, bilinear
functional in h and h’ on ~1 1 x !/ 1.
Thus there is a Schwartz-space such that

To prove (2.8) it suffices again to show that

tends to 0, as s’ --+ s, which is obvious. This yields (2.8).
Q. E. D.

It is straightforward to show that lemma 2 . 2 yields :

For s = 0, h in !/1 and F in 9J1v,+ we define

It is easily checked that this équation defines a strongly continuous unitary
~, E on % w with a s. a. infinitesimal generator 

which is called the (time 0 -) quantum field. Obviousty the function ~(h (8) c5s)
is affiliated with and, because of (2 . 7), it is in L2(//’, dv), for 0.
It then follows that

exists and

the physical vacuum Q is in the domain of the s. a. operator Moreover
one can easily show that

and hence

Vol. XXI, n° 4 - 1974.



280 J. FRÖHLICH

Since the infinitesimal generator H of { 1 -r &#x3E; 0} is positive, 
is analytic in -r for Re -r &#x3E; 0 and

Therefore

exists and is a continuous function off for all h1 and h2 in G. The tempered
distribution jy2(ç, fJ) is easily shown to be Poincaré-invariant (See e. g. (29]
(30) [~7] and [24)). It is the two-point Wightman distribution.
At this point we should add some comments on the significance of

Axiom Cl).
From the well-known spectral représentation of the two point Wight-

man distribution we dérive the following spectral représentation of the
two point Schwinger function :

where Sm(~ - ri) is the kernel of ( - ¿B + m2)-1, p is a measure supported
in [0, 00] (and in two space-time dimensions p ([0, E]) -+ 0, as E -+ 0,
because of the infrared divergencies).
Axiom Cl) restricts the growth of the measure p as m2 -+ oo. It holds

if e. g. the measure p is finite (i. e. the theory is canonical in a weak sensé,
or if dp(x) as x -~ (0) (*).

Step 4. The 03C6-Bound and the Construction
of the Schwinger Functions.

We have shown in step 3 that for all real functions h with ~h~ 119’  
is a s. a. operator on and that the physical vacuum Q is in the domain
of = Il l&#x3E;(h Q9 ~ Il I h I I .~.

Let III . /// be the norm of Axiom C2) and let h be a real function with
/// h III  oo and ~ h~119’  oo. The major goal of step 4 is the proof of the
following inequality :
There are positive, finite constants cl and c2 such that in the sensé of

densely defined quadratic forms on ~’w x ~’W

It turns out that, given Axioms A, B, and Cl) inequality (2.12) is equi-
valent to Axiom C2).
We now have to discuss thé measurability and selfadjointness of certain

functions on !/’ of importance for thé following arguments with respect
to thé measure v.

(*) The author has recently extended aIl results in Steps 1, 2, 4 to thé case where

d03C1(m2) m2  ~.
Annales de l’Institut Henri Poincaré - Section A



281VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

Wherever the proof in one of the following statements is omitted we
feel it is straightforward and therefore we leave it to the reader. Thèse

proofs always consist in applying Duhamel’s formula

the fact that the Euclidean vacuum is ’cyclic and separating for the algebra
generated by { f’E ~ ~ and that it is in the domain of the sharp-time
fields ~(h Q ~S), h E ~!, the Schwartz inequality and the properties of
the two point function 6~(~ 11) established in step. 3. For the basic tech-
niques of thèse proofs the reader is referred to [6] (sections 3 and 4).

Let f be a function on [R2. We set f ‘(x) _--_ f(x, t) and we define a
norm |.|1 by

Then, obviousty,

and therefore thé functional J(/) ( ofAxiom A) is continuous in / in thé
norm 1. Il (by Duhamel’s formula and thé Schwartz inequality). Further-
more, if {fn} is a séquence of functions in G converging to a real function f
in thé norm 1 . Il’ then 

_ . V.fI» - fi»

exists and defines a unitary group in À on The infinitésimal genera-
tor is s. a. on Xv and is in L 2(//’, dv), i. e. the Euclidean vacuum is
in the domain of C(/), because of (2.13).
EXAMPLE. Let h be a real function with finite ~.~G-norm and let XT

dénote the characteristic function of the interval [ - T, T]. Then

is finite. Thus C(~ï (8) XT) is a s, a., measurable function in L2(//’dv) and
hence e±03A6(h~~T) is a s. a. measurable function on !/’. We shaH see that,

if in addition 1 2, L, == @ XT) is finite, as

a conséquence of Axiom C2). This will lead to inequality 2. 12 .

From lemma 2.2 we know that for h a real function on M with

Il I h C(h (8) bs) is a s. a. function on ~ for ail real s. Therefore

F n((h (8) bs) is a s. a. operator on jfy bounded from above by n.
By (2.7) ~(h Q ~s) is in and hence

Thus

Vol. XXI, n° 4 - 1974.
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DEFINITION. - Let C be the ciass of complex-valued, continuous func-
tions {g(r)} on R with the properties that

Let CR be the class of real valued functions in C.
m

LEMMA 2 . 3. - Let g be in C and supp g~ [ - T, T] and let tm,N= 2 N 
T - T.

Then

is cr well defined operator on and

exists and the norm this operator is bounded by

gm is a sequence in C which converges ro a function g in rhe
LI then

exists and is bounded.

For g 0 in CR

1
’ for h a real function ,  oo, there ’ are

finite constants Ki, and ’ c’ such that

- It is obvious that UN(n, h, g) is well defined and

To prove 
" (2.18) it suffices now to show that

= Il ~~) - UN-(n, h, g)) tends to 0, as N, N’ -. oo.

Annales de l’Institut Henri Poincaré - Section A



283VERIFICATION OF AXIOMS FOR EUCLIDEAN AND RELATIVISTIC FIELDS

By Duhamel’s formula and the Schwartz inequality

It is easy to see that

 (8) ~r))~ ~))Q &#x3E;1’"v = 

(see step 3). Therefore  @ @ &#x3E;1’" v is jointly conti-
nuous in and r’. Using this continuity property and expanding the r. h. s.
of (2.23) into a sum of scalar products we see immediately that tends

to 0, as N, N’ -~ 00. This proves (2.18).

Since g is continuous p-nT N03A3 Im g(03C4m,N) ~ e-nT-T d03C4 Im g(03C4), whence (2.19).
Now

which tends to 0 as m, m’ -+ oo.

2n sup ~gm~1
.

Similar reasoning j yields (2 . 21 ) (Hint :

uniformly in t).
We are left with proving (2.22).
Let F be a v-measurable, integrable function on ~. We set

and define ~n(h, f’) - where 

1 / 
is in C. Let h be a real

function on R with ~h~G  oo and and let and be the
functions defined in Axiom C2). 2

Vol. XXI, n° 4 - 1974.
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DEFINITION :

Then for all j = l, is a well defined bounded operator
on We claim that in the L2(!f’, dv)-norm

It is obvious that the séquence { 1&#x3E;"(:!: 1 + g3) :’= 0 is increasing and

which tends to 0, as n -+ oo . Hence

in L2(!f’, dv) and thus v-almost everywhere on ~’.
Hence lim +g3) = sup +g3) = +g3», v-almost

oo n

everywhere on G’. It suffices therefore to prove that {e03A6n(±h,g1 +g3) is
a Cauchy sequence in L2(!f’, dv).
Now

By the same arguments as given above

v-almost everywhere on ~’.
Therefore, by the monotone convergence theorem, it suffices to establish

uniform bounds on

Since  e03A6n(...)e03A6m(...) v ~  e203A6n(...) 1 2v  203A6m(...) 1 2v bounds on the first inte-
gral above yield bounds on the second one.
Now

which is finite by Axiom C2). This complètes thé proof of (2.24) and o shows
that is in L2{!f’, dv).

Annales de l’Institut Henri Poincaré - Section A
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The proof of (2.22) is now easy :

As before we show that

and

v-almost everywhere. Therefore

and hence  Const and by the monotone convergence

theorem  ~,,  Const e2T. (2.25)
Q. E. D.

Construction
of the perturbed Hamiltonian and 

We define a linear subspace

From (2.3) and the construction of % w we know that ~ is dense in 
One can now construct semigroups { &#x3E; 0 } on ~.
Let

where

Obviously

From lemma 2.3, (2.18) we know that

where ~t is the characteristic function of [0, t], in the norm of Hence,
by (2 . 3)

where the limit is with respect to the strong topology on It now follows

Vol. XXI, n° 4 - 1974.
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from (2 . 27), Theorem l, the construction of Kw and Vt that { 
are weakly continuous, s. a., exponentially bounded semigroups on % w.
Hence they have s. a., infinitesimal generators A~ which are bounded
below by - n.

Since is in + and since Fr is in + if F is, for all r ~ 0,
we conclude that the semigroups P±t|t ~ 0 leave D invariant. Thus
D± ~ {P±to03B8|03B8~D, t o &#x3E; 0} are cores fo r A + , A _ , respectively. If 03C8 is
in ~~ there exists a + such that ~ = v(G). Therefore

The 1. h. s. of (2.28) tends to - as t -+ 0.
Since Gt is in i. e.  oo. and therefore

the first term on the r. h. s. of (2.29) has a limit which is given by

Thus the second term on the r. h. s. must have a limit.
This limit is equal to

Therefore on the core D±

THEOREM 2 . 4. - Suppose that h is a real function on R with B1 h~G
and /// h/// ,finite. Then in the sense densely defined, quadratic forms
on % w x % w

1
Proof: - We show that for real h ,  oo and 

uniformly in n  oo.

Annales de l’Institut Henri Poincaré - Section A
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Thus on the quadratic form domain Q(H) of H

Now Q(H) n ~, where ~ J is defined 0 in (2. 26), is dense ’ in Q(H) in thé
o 1 = + (Recall that D J contains a core "

for H, H~.)
Since h)) - rp~ ± -~ 0, as n  oo,

From this and (2.32) we now conclude that

Since is linear in h, this proves the theorem.
We still must prove (2 . 31 ). From (2 . 27) we know that

is bounded below by - n. Thus

From the spectral theorem and the properties of ~ if follows that, given
G &#x3E; 0, there exists a unit vector t/J £ in ~ such that

for ail positive T.
Since .pt is in ~, there is a G in + such that

Thus

Thus

Taking logarithms and passing to the limit T = oo we obtain
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Since E &#x3E; 0 is arbitrarily small this proves (2 . 31 ). Thus the theorem
is proven.. Q. E. D.

1
COROLLARY 2.5. - For all t ~ 0 and fOr /// h /// ~  2

and , determines an exponentially bounded, weakly continuous semigroup
on For 

Proof. Equation (2.33) follows directly from Theorem 2.4 and its
proof. Equation (2.34) follows from (2.28), Theorem 2.4 and its proof.

Q. E. D.

Bounds on the J-functional and Construction
of the Schwinger Functions.

Let J be the functional defined in Axiom A. We want to show that J(~/),
f in ~, is the boundary value of a function J(~ f ) which is analytic in ç
on the lm ~ 1  1/1/1,9}’ where 1.1,9 is some
norm on real functions over [R2 which is continuous on ~.

It then follows from thèse analyticity properties that the moments

, 

of the measure v exist for all positive, finite integers m and arbitrary test-
functions f1, ..., fm in !/([R2) and that they are continuous, multilinear
functionals on !/([R2) x m. By the nuclear theorem tl, ..., xm, t,")
is a tempered distribution. It is called the m-point Schwinger function (or
Euclidean Green’s function).
We may therefore call J the generating functional of the Schwinger func-

tions, [6]. Let f be a function over [R2 and y(x) == f(x, t). We define

Let f be in !/([R2) with supp f c [ - T, T] for some T  oo and such
1 2n

NT.
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It follows now from Lemma 2. 3, Theorem 2.4, and Corollary 2.5 that

and by Theorem 2 . 4 H - c///Im/’~///, for

Thus|.

In particular, if f is in G and | Im 03BE| I .Î |G 

It is shown in [6], Lemma 3 . 2, that (2 . 39) implies continuity of J(/)
in 1 with respect to the Moreover for functions

exists, is linear in f i , ...,~, and

and all m, by the Cauchy formula for analytic functions. See [6], Theo-
rem 3 . 8 (c). This proves that C~’~(x 1, ..., Xm, xr) is tempered and deter-
mines the order of this distribution in dependence of m.

Let 1([) == 3x such that  x, where / is some
function on 1R2, and let

Let u be the completion of !/(1R2) in the norm |.|G and let ud be the class
of functions on 1R2 which are bounded and piecewise continuous and such
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that - oo  l(/)  f(/)  oo, there exists a time ordered séquence of

disjoint open intervals ~1’ ... , ~"~ f~ on IR such that

for t E 0394l and some function f0394l with ///  oo, all 1 = 1,..., n( f ). Clearly
each f in u is the limit of a sequence {fn}~n=0 ~ 03C5d in the norm |.|G (2 . 41 )

Let now ... fm be in ud and

Using équation (2.37), corollary 2.5 and the 03C6-bound proven in Theo-
rem 2.4 we conclude that

where T &#x3E; 1, 1 ~}, by standard arguments. Let ..., hm
be real functions on [R with ~hi~G  oo and /// oo, i = 1, ..., m.
Then it follows from (2.42) and (2.41) that in the sensé of distribu-

tions in ... , tm

provided t 1  t2  ...  tm. We set i~ = 1 
- i = l, ... , m. The

r. h. s. of (2 . 43) is thé restriction of a . function ... , zm -1 ) ana-
lytic in ~ 1, ... , im -1 1 On .Sm -1 - ~ ~ i ~ , ... , zm - ~ ~ ~ r Re " &#x3E; o ~ to thé
set { 03C41 - t2 - r 1 1 tm - 1 &#x3E; 0 }. By Theorem 2.4 ’

We can now proceed along the lines explored by Nelson in the basic
paper [24] and get the following:

THEOREM 2 . 6. - The Schwinger functions t 1, ... , xm, tm) obtai-
ned from a generating functional J which satisfies Axioms A, B, and C are
the Wightman functions (denoted by 1, it 1, ... , itm)) at the Eucli-
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dean points { x 1, it1, ... , itm~| xi, ti~ ~ xj, tj~ for i ~ j, Xj and tj
real fôr all j} of a unique relativistic Quantum Field Theory satisfying all
Wightman axioms (with the possible exception of the uniqueness of ’ the
vacuum) .
The Hilbert space, the (time 0 - ) quantum field and the energy momentum

operator (H, P) obtained fi-om the Wightman distributions

by reconstruction theorem [18] [40] are the same as the Hilbert
space KW, the (time 0 -) field cp, the infinitesimal generator H of the s. a. con-
traction semigroup Vt the infinitesimal generator P unitary space-
translation x E defined in a natural way on obtained
in steps 1, 2, and 3 of Section 2.

Remarks Concerning the Second Part of Theorem 2.6. 2014 It is obvious
that from the bounds (2. 38), (2 . 39) on J(~ f ) ~ it follows that the « Eucli-
dean vacuum » Q is an analytic vector for the fields  oo }.
Thus the vectors E Kv and E Kw (with supp f ~ R {t &#x3E;: 0})
can be obtained by power séries expansion provided is suffi-
ciently small. But this, the analyticity properties of the Schwinger functions
in the time variables and the Reeh-Schlieder theorem [18] [40] for some
complex neighbourhood of the Euclidean points imply that the space 
the (time 0 - ) field ~p and the energy momentum operator (H, P) obtained
from the functional J by the constructions in steps 1, 2, and 3 of Section 2
are the same as the ones one gets from the Schwinger functions

by Osterwalder-Schrader reconstruction [29] [30], or Nelson’s reconstruc-
tion [24]. By results of [29] [30] this proves the second part of Theo-
rem 2 . 6. All other détails for the proof of Theorem 2.6 follow directly
from our results in Section 2 and refs [24] [29] [30].

Further Conséquences of Axioms A, B, and C
and Connections to Nelson’s Axioms.

1 ) Suppose that Axioms A1)-A5), B and C hold. Then ait the results
of Section 2 (with the exception of the Euclidean invariance of the Schwin-
ger functions and the Poincaré-invariance of the Wightman distribu-
tions }~m=0 obtained in Theorem 2 . 6) remain true. Thus Axioms Al)-
A5), B and C always imply the existence of quantum fields reconstructed
from the Wightman distributions [l8] [40] (and acting as densely defined
operators on the space of step 1 ).

If in addition to Axioms A 1 )-AS) B and C, the Schwinger functions are
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Euclidean invariant then the functional J is Euclidean invariant. For,

if 1 ç 1  -1/’1 - 1, where 1 1 I G is finite, then b (2. 39 and (2.40) )

which is Euclidean invariant. Thus Axioms A, B and C hold.
2) Suppose that Axioms A1)-A5), B and Cl) hold and that in the sensé

of densely defined quadratic forms on Kw x jfw

Then for arbitrary, real functions g, gT such as specified in Axiom C2)
or for gT and for arbitrary real function h on IR 1 with ///~/// ~ 1

whence Axiom C2).
Let T’ == T + 1. Application of (2.37) yields

because of (2.46) and the inequality 0 ~  1. Q. E. D.

3) Suppose that Axioms A1)-A5), B and C hold and let f be a real func-
tion on 1R2 with  oo. Then there exists a &#x3E; 0 such that Re J(~ f ) &#x3E; o,
provided 1 ~ 5(/). This is true, since J(0) = 1 and J(~ f ) is continuous in ç
in some neighbourhood of = 0.

Therefore is analytic in ç on {zeCHz! [  ~(/)}. It is the

generating functional of the truncated Schwinger functions

..., xm, tm)T, [77]. Using the analyticity properties of log J(ç j’)
in ç and Cauchy’s formula [6] we obtain the estimâtes

(For thé techniques, see [6]). A beautiful analysis of thé generating func-
tionals of truncated Schwinger functions and vertex functions is given in [11].
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4) Suppose that Axioms Aî)-A5, B and C hold and let f be in ~. Then
the quantum fields _

where the integral is defined in the weak sensé on Q(H) (by Theorem 2.4),
are essentially s. a. See [10] and [22] for a proof.
Time ordered and retarded products of the quantum fields cpw (smeared

with test functions in !/(R2)) exist as densely defined operators on 
Their vacuum expectation values exist and are tempered distributions.
See [22] for a proof.

5) Let be the Hilbert space, H the Hamiltonian 2014 s. a. and positive
and Q the physical vacuum in i. e. the groundstate of H, associated
with some quantum field over ~.

Suppose that the (time 0 - ) fields ~p(h) = (8) exist and are s. a.
for ail test functions h in ~1 1 and that

(Q, is a continuous functional on !/1.
Assume moreover that the vacuum H is cyclic for the von Neumann
algebra 9M(0) generated by the operators { E !/1 } on Finally,
assume that for arbitrary, positive operators F and G in 

Under thèse assumptions the following holds

THEOREM 2.7. - (a) Let T be some finite real number and

Let / be in ~. Then

exists and obeys Axioms Al)-A5), B and 
(b) If moreover :t /// h /// (H + c) on (the quadratic form

domain oJ’ H ), for some norm /// . /// continuous on !/1 and some finite c,
then Axiom C2) holds.

(c) The (Euclidean) Field Theory obtained from the functional J of (a)
by reconstruction (Theorem 1 ) obeys a special form of Nelson’s axioms [24]
(discussed in [38]), where the field is only assumed to transfôrm covariantly
under « time »-translations and the Markov property can only be shown
to hold fôr strips and half-planes parallel to the x-axis (See also [6], theo-
rem 3 1.) .

(d) If J is a functional satisfying Axioms A, Band C and if the physical
vacuum Q in the Hilbert space is cyclicfor the von Neumann algebra ~(0~
generated by the operators { = h in !/1 } then alt hypotheses
Vol. XXI, n° 4 - 1974.
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Theorem 2 . 7, (a)-(c), in particutar (2.. .~ 50), hold and the Euclidean Field
Theory obtained from J obeys a special form of Nelson’s axioms [24] [38] [6],
where the Markov property is only known to hold for strips and half-planes.

Proof: Part (a) of Theorem 2.7 is proven in [6], Section 3, up to the
verification ofAxiom B (See also (37].) The proof of Axiom B is as follows :

Let , f 1, ... , Jn be arbitrary test functions in ~ with the property that

and let ...,c~ be arbitrary complex numbers. We define a séquence
of vectors in by

where { a } is the smallest integer bigger than a. By a straightforward cal-
culation we et

n

(for N odd) which by the first part of (a) tends to ~ 2014/i,~
j=i 1

as we let tend first N -+- oo and then T -+- oo. Thus Axiom B holds and
the proof of (a) is complète. _

Part (b) now follows from (2.47). Part (c) is proven in [38]. The basic
reason for part (c) to be true is the fact that under the conditions of Theo-
rem 2.7 { ~*~" ~ ~ 0 } is the transition function of a conservative Mar-
kov process on the spectrum of the algebra 9M(0) and is s. a. on Such
a Markov process allows for the construction of a measure

which has the Markov property and is essentially given by the Fourier
transform of J( . ) (See also [6}, Section 3 ; [5] for the terminology.)
The first part of (d) follows easily from steps 1, 2 (Lemma 2 .1 ), and 3

of this section. Since under the assumption of (d) the hypothèses of Theo-
rem 2.7 (a)-(c) are true, part (c) applies and yields Nelson’s axioms with
the Markov property for strips and half-planes parallel to the x-axis.
Euclidean invariance then yields the more général Markov property stated
in (d). Q. E. D.

Remark concerning the Axioms
of Osterwalder and Schrader [29] [30] [31 ].

Axioms A, B, and C imply the Osterwalder-Schrader Axioms in the
forms given in refs. [29] [~7] ] up to the uniqueness of the vacuum (This
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follows from estimate (2.40).) The Osterwalder-Schrader Axioms are

therefore clearly deeper and more esthetical. Thèse Axioms in the form
of ref. [30] (Axioms (EO’)-(E3)) are verified for the studied

in Section 3 in [6] and for thé class of constructed in (12] [l3]
in ref. [30].

SECTION 3

VERIFICATION OF AXIOMS A, B, AND C
FOR A CLASS OF P(03C6)2-MODELS

In this section we verify our axioms for the well-known 
with haif-Dirichtet boundary conditions [16] in a two dimensional space-
time [6] [7] [16] [26] [27]. Our results and the main techniques are based
on estimâtes derived in [6] and on the beautiful corrélation inequalities
of Guerra, Rosen, and Simon [16].
We start with a probabilistic definition of thèse models [23] [16]. Let m

be some positive, real number and let Sm(~ - n) be the kernel of the s. a.
operator (- .c1 + m2)- 1 on the space L2(0~2). Let f and g be in the real
Sobolev space i. e. Il ( - .c1 + 1)-~ f ~~2 and !!(- A + 1)’~!!2 are
finite. We define

We let J~ be the functional given by

It is well-known that Jm satisfies Axioms A, B, and C [7d] [77] [23]
[2[j?7Letc.
We let be the measure and 03A6 the Euclidean field over !/ obtained

from the functional J~, by reconstruction; Theorem 1. Let mo be some fixed
real number, 0 ~ m. We define Wick-monomials of the fields C(/),
/ in (with respect to the measure on !/’) as follows :

It is known that one can let tend f to 5 ç and still the 1. h. s. of (3.3) makes
sensé as a densely defined sesquilinear form on L2(~’, dv) x L2(~’, dvrn)
(for ail finite w ~ mo). The form

where the intégral on the r. h. s. of (3.4) is defined in the weak sensé, is
in L~’, 1 ~ p  oo, for ail functions h in n Moreover,
if n is even and h positive,
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Let A be a compact set in [R2 with continuous, piecewise smooth boun-
daries which coïncides with the closure of its interior and let ~^ be
the characteristic function of A. We define the measure

where

which is known to be finite as long as mo  m. We let be the Fourier
transform 

Let

and

LEMMA 3 .1. - Suppose that A = Ae. Then .fôr alI finite m &#x3E; mo 
satisfies Axioms A )-A4), Band C crnd

Proof. 2014 It is obvious that satisfies Axioms A 1 )-A4) and C. Clearly

We are left with verifying Axiom B. Let f1, ..., fn be arbitrary test func-
tions in G with supp fl ~ R x {t ~ 0}, = 1, ..., n, and let 
be arbitràry complex numbers. Then
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Since A = A- = A +,8 and hence

and since e1 2(m2-m20):03A62:(~^+) is affiliated with m03BD0m, + the r. h. s. of (3.9) is

positive. Q. E. D.

Remark. Let S~o,m(~’ 11) be the kernel of the operator

By straightforward arguments [37] we see that

DEFINITION. Let 11) be the kernel of the operator ( - + 

on the space L2(A), where is the Laplacian with Dirichlet boundary
conditions at ôA.

Let f be in (i. e. f is supp f ~ A andf= 0 on aA). We define

LEMMA 3 . 2. - For fin 

Proof. 2014 By (3 .10) and (3.11) it suffices to check that for/in 

This is well-known from two dimensional quantum mechanics (Use an
eigenfunction expansion of the continuous part of spec

is negligible as m -+ oo). Q. E. D.

COROLLARY 3 . 3. - If A = A~, then satisfies Axioms AI)-A4) B
and Cl) with the test function replaced by the nuclear space 
and

Remarks. - By Theorem 1, is the Fourier transform of a
measure on the dual Câ (A)’ of Again C dénotes the field
on associated with From (3 .11 ) it is obvious that for f in

is entire analytic in and that

Vol. XXI, n° 4 - 1974.



298 J. FRÔHLICH

By the first and second Griffiths ineq uali ties (16]

and hence (see [6], Lemma 3.2) is continuous in/m the norm

uniformly in A. Therefore } has the following trivial extension to
the space !/: For ~’ in ~ we set

From (3.12) and (3.13) we conclude that satisfies Axioms AI-A4),
B and C, and = provided A = A9.

DEFINITION. - Let P be a real polynomial

where a" &#x3E; 0 and (without loss of generality [76]) ~ &#x3E; 0. We set

and

and Wick ordering is defined as in (3.3).
The following is well-known [8] [l6] [27] :

and

DEFINITION.

We let dénote the Fourier transforms of the measure and
we set

which is well defined because of (3.12) and (3.16).
Obviously

provided 0 A = 1 Moreover e-V^+ is affiliated 0 with Hence ’
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LEMMA 3 . 4. - Let A = A be compact (with continuous piecewise ,

smooth boundaries and ’ A = 

T hen satisfies Axioms A 1 )-A4), B, and i C and 1

2014 With the exception of Axiom C this is a direct conséquence
of corollary 3 . 3 (3 .12) (3 .13) (3.16) and (3.19). 1 t is obvious that 
is entire analytic in ç and

which together with (3 .12) and (3.16) yields Axiom C2).

and this together with (3 .12) and (3.16) yields C I ). Q. E. D.
We now must show how one can pass to the limit A = [R2 and verify

Axioms A, B, and C for the limit functional

The basic ingrédients for this are the corrélation inequalities of Guerra,
Rosen and Simon [16] (and Nelson [26]) and uniform bounds on the func-
tional established in (6]. In order to get thèse uniform bounds
we have to compare the functional with a functional which is
defined to be the Fourier transform of the measure

where l and this is finite for compact A’.
:/’

We define a norm ///. /// on functions on [RI by

and a norm 1 . 19’ on functions on [R2 by

We now choose A’ = Ai = [ - j/2, j/2] x [ - T/2, T/2]. It is shown in [6],
subsection 3.4, by use of the transfer matrix method [16] [37], or, in other

Vol. XXI, n° 4 - 1974.



300 J. FRÔHLICH

words, by use of the spatially cutoff P(03C6)2 quantum field Hamiltonian H, [9]
that

exists for all complex ~ and real f with finite norm ~’ ~ ~ and, for arbitrary
but fixed f, is entire analytic in ~. The functional J~ satisfies Axioms A1)-A5),
B, and C.

Actually, it is shown in [6], sections 2 and 3, that the Hamiltonian H,
(which is densely defined, positive and s. a. on the usual Fock space ~ [9])
obeys the hypothèses of Theorem 2.7 with

and hence yields the existence of the functional JI which satisfies Theo-
rem 2.7 (a) (b) and (c).
The following uniform bounds are proven in [6], subsections 3.4, 3.5 :

for some finite A and B independent of l. Let g and gT be real test functions
on M such as specified in Axiom C2). Let h be a real function on R with

1. Then there exist finite constants K and c independent of l
such that

If vl dénotes the measure on G’ whose Fourier transform is the functio-
nal J~ then

for some finite C independent of 1 (See [6] formulas (3.42) and (4.16).)

LEMMA 3 . 5. - Suppose that the polynomial P is such as specified in (3 .14)
(such that the Griffiths inequalities of Guerra, Rosen and ’ Simon [16] apply).
T hen

where h and gT are such as in (3 . 24~. Let f be a non-negative function with
| .  oo and Iet 03BB be a positive real number. I f A c A’ (compact) then

Finally
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Proof 2014 We know that for arbitrary, fixed f with |f|G finite the func-
tions and are entire analytic in ~. Therefore they have
a power séries expansion at ~ = 0 which converges absolutely for arbi-
trary ~:~

where

and C~m ( f 1, ... , fm) are the m-point Schwinger functions.
Let f functions on R2 with 19’  oo, j = 1, ..., m. It is

shown in [6] that the estimate (3.23) implies

for some finite constant D and uniformly in l^ E [0, By the first Griffiths
inequality [l6]

whence (3.26), and by the second Griffiths inequality [l6]

and for A c A’

which together with (3.23) yields (3.27) (3.29), respectively. Inequa-
lity (3 . .28) follows from (3. 27) (for f = h Q gT :t i) and from (3 . 24).
Finally (3. 30) is a consequence of (3. 33) for m = 2 and the estimate (3 .25).

Remark. The applicability of the Griffiths inequalities (3.32)-(3.34)
is due to our special choice (3.14) of the interaction polynomial P and is
not possible for general polynomials [16]. Q. E. D.

COROLLARY 3 . 6. - For fixed complex 03B6{J^,Pm0,D(03BE f ) is a family of
functionals which is uniformly bounded in A for arbitrary functions f with |f|G
finite and is equicontinuous in f in the norm 1 . For fixed, real f with

 |^~R2 is a family of entire analytic functions of 03BE which
is uniformly bounded an A in absolute value by AeB 1 

Proof. - Thé first part of the corollary is proven in [6] (section 3,
lemma 3 . 2 and theorem 3 .8). The second part of the corollary follows from .
lemma 3 .4 (3. 20) and (3. 23). Q. E. D.
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THEOREM 3 . 7 (Main result). - 1 ) Let { Aj }~j= 1 be a monotone increas-
ing sequence of compact regions (with continuous, piecewise smooth bounda-
ries and the properties that AJ = Aj c Aj+l) converging to R2. Then
, f ôr arbitrary, real function with f ( G nUe and an arbitrary, complex nurn-
ber ç,

and is independent of the sequence { ^j| properties of A j as specified }~j= 1
chosen.

2~ The limit functional satisfies Axioms A, B, and C of Section l.

Proof. - Let fl and f2 be arbitrary, non-negative functions with |f1 |G
and |f2 1 G finite and let 03BB1, À,2 be non-negative, real numbers. Then by (3 . 29)
and (3 . 27) of lemma 3 . 5

exists. Also (3 . 29) and (3 . 35) imply that + ~2f2)) is inde-
pendent of the 1 (and hence Euclidean invariant), by
standard arguments [16].

Obviousiy + 03BE2f2) is jointly entire analytic 1 and 03BE2
(for all j  oo) and by (3.27)

Hence, by (3.35) and twice applying Vitali’s theorem, we conclude that

exists for arbitrary complex 03BE1 and 03BE2, is entire analytic in ç 1 and 03BE2 and
is independent of the sequence {^j }.i= 1. Now, if f is a real function with
1.119’  oo and if

and hence

exists and is independent of the This proves Part 1 ).
Proof of 2). 2014 It follows from the independence of the limit functional

of thé 1 that this functional is Euclidean inva-
riant [2~]. It then follows from corollary 3 . 6 that is continuous

in/in thé norm . . 1 y and therefore in the topology of ~. Hence, by Part 1 )
and lemma 3.4 satisfies Axiom A. Choosing the 1

such that A~,~ = for and applying lemma 3 . 4 proves Axiom B.
Finally Axiom C follows from lemma 3.5 (3.28) and (3.30). Q. E. D.
Remark. - Since is entire analytic in ç for  oo and
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I Jmo~n(~.Î) ( _ the bounds (3 . 31 ) extend to the Schwinger
functions obtained from the generating functional Jmo,D
and yield an improvement of the bounds (2.40) [6].

SECTION 4

THE UNIQUENESS
OF THE « EUCLIDEAN » AND THE PHYSICAL VACUUM ;
THE INTERACTING FIELDS ARE NOT FREE FIELDS

In this section we dérive some more detailed properties of the infinité-
volume generating functionals constructed in Theorem 3.7. By
Theorem 1 thèse functionals are the Fourier transforms of probability
measures on the G-algebra generated by the Borel cylinder sets of y.
Thèse measures are called the infinité-volume interacting measures.
The first question we want to answer is under what conditions the « Eucli-

dean vacuum » defined in Theorem 1 and the physical vacuum defined in
Step 2 of Section 2 are unique in a sensé defined below.

THEOREM 4. 1. - Let P 4(Ç) = a~4 + b~2 + ~C~, &#x3E; 0 (and for
convenience  &#x3E; 0 [lb]). Let corresponding infinite-volume
interacting measure. Then

1) The « Euclidean vacuum » (i. e. the function 1 on G’) is the only vec-
tor in = L2(G’, dvP4m0,D) which is invariant under the ( time-translation »
subgroup of Euclidean group E(2).

2) The physical vacuum Q in (defined in Step 2, Section 2) is the
only Poincaré-invariant vector in 

Proof - We use the following proposition which is essentially due
to Araki [7]:

PROPOSITION D. - Let J be a functional satisfying Axioms A, B and C.
Then (a) the « Euclidean vacuum » 03A9 is unique in the sense of Theorem 4.1,
1) if and only if for arbitrary test functions f and g in G

where gS(x, t) --- t - s)
(b) (4.1) holds then the physical vacuum is the only Poincaré-invariant

vector in the Wightman Hilbert space % w constructed from the functional J
in Section 2.

Proof of Proposition D. - Part (a) is proven by Araki in [1]. For the
proof of part (b) notice that from condition (4 .1 ) it follows that

Vol. XXI, n° 4 - 1974. 2 2



304 J. FRÔHLICH

tends to 0, as 1 s 1 -+ oo, where C~k(~1, ...,~) is the k-point Schwinger
function obtained from the generating functional J as in Section 2. But
thèse Cluster properties tell us that the eigen value 0 of the Hamiltonian H
obtained in Step 2, Section 2, is simple. See [29] [30] [37] ] [36]. This complètes
the proof of Proposition D.
We now corne back to the proof of Theorem 4.1. We must prove the

Cluster properties (4.1).
From the bound (3 . 31 ) on the m-point Schwinger functions we know

that for ail finite s gs) is given by

and the r. h. s. of (4.2) converges absolutely.
We show that the r. h. s. of (4.2) converges absolutely, uniformly in s.

For

which converges for all imite f (,~ and g (~. It therefore suffices to show
that for arbitrary/and g in ~

tends to 0, as s -+ oo, for arbitrary k  oo and  oo.

But the convergence (4. 3) has been shown by Simon in [36] [37] by using
the beautiful Lee-Yang theorem proven in [35] [27] (which is only known
to be true for P = P4 !). This and Proposition D complète the proof of
Theorem 4.1. Q. E. D.
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Remarks. 2014 (f) Theorem 4.1, 2) has also been proven by Glimm, Jaffe
and Spencer [12] [l3] under different hypothèses on the polynomial P.
They establish a stronger form of the Cluster properties (4.3) (yielding
the existence of a positive mass gap). But this and the bounds (3. 27) (proven
in [6] under the hypothèses of [12] [l3]) imply Theorem 4.1,1).

(ii) COROLLARY 4. 2. Let J be afunctional obeying Axiom Al)-
A5) and hypothesis (4 .1 ) of Proposition D. Then the measure v obtained
from J by Theorem 1 is ergodic under the action of the group { Tt|
defined in ( 1. 5) = t), where ~f denotes the « time-translation » sub-
grou p E(2).

Proof. - Since J satisfies hypothesis (4 .1 ) of Proposition D and
Axiom A1)-A5), the function 1 identically 1 on ~, i. e. the « Euclidean »
vacuum is the only vector in L?(9~, dv) which is invariant under { 
Hence, if F is a v-measurable, positive function with Fdv = 1 and the

measure Fdv is invariant under { Tt 1 }, then F = I. Q. E. D.

THEOREM 4.3. - Let v and  be two probability measures defined on
the 6-algebra generated by the Boret cylinder sets of 5~’ short PBC

measures) whichare invariant and ergodic under the action of the group
{ of automorphisms of the underlying 6-algebra.

Then either dv or v and  are mutually singular PBC measures.
If only  is assumed to be ergodic under { Tt| t E then there exists a
number A E [0,1] and a measure s which is invariant under {Tt| t~

such that  and s are mutually singular and dv = + ( 1 - 03BB)d .

Remarks. This theorem is well-known from the theory of group repre-
sentations (*). For the convenience of the reader we présent a short proof:
Obviously there exists a measure s such that J1.s and  are mutually

singular PBC measures, a -measurable, positive function F on G’ with

= 1 and a real number ~, E [0,1] such that

Let and be characteristic functions on ~’ such that

(*) See e. g. : G. W. MACKEY, Induced Representations and Quantum Mechanics, W. A. Ben-
jamin, New York, 1968 (Chapter 5, Section 5.2).
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Then for ail 

since  is invariant under { Tt | t ~ H }.
We how let t ~ 1 -+ oo and use the ergodicity of v to conclude that

Thus then clearly F = 1, since both v and  are
invariant under {Tt|t E H }.

This proves the first part of the theorem.
If v is not ergodic but still invariant under {Tt|e H} then

and it is standard to show that the measures d,us and must be inva-
riant Since  is ergodic, F = 1. This complètes the
proof of Theorem 4.3.
Theorem 4 . 3 has non-commutative generalizations :

EXAMPLE. - Let 9t be a C*-algebra and { rj t~H} a représentation
of H as C* automorphisms Let cvi and cv2 be two states on U which
are invariant and ergodic under { E i. e.

Then either úJ 1 = or the G. N. S. représentations and 03C003C92 of U

are d isjoint. If the support of the measure * is contained

in the interval [a, oo) for some fixed a &#x3E; - oo and all A E = 1, 2, then
the représentations = l, 2, of 21 are irreducible. Under conditions
stated in [33] (e. g. asymptotic abelianess) each H-invariant state úJ on U
can be uniquely decomposed into pure H-invariant states. The following
applications of Theorem 4.3 seem to be new.

DEFINITIONS. - Let mo be a fixed, positive, bare mass. We define C(mo)
to be the class of real, lower bounded polynomials P with P(O) = 0 for
which the Schwinger functions { C.~m~ô D(~ 1, - ~ -, ~k) can be constructed
by a convergent Cluster expansion in the sensé of refs. [12] [l3] (and have
exponential cluster properties).
- Let : : dénote Wick ordering with respect to the Gaussian mea-
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sure vmo and let P be a polynomial, g a test function in ~. We define a func-
tion on ~’ by ,

where

We define to be the class of real, lower bounded polynomials P
with P(0) = 0 for which the interacting measure exists and has the

property that the Radon-Nikodym derivatives

exist, are positive vPm0,D-integrable functions on G’ and

It is shown in [7] (Theorem 4. 5) that the classes and C(mo)
are non-empty. More precisely, if P is an arbitrary real, lower bounded
polynomial with P(O) = 0 then there exist a positive À such that

[12] [13] and a positive À1 such that (*). If
is in C(mo) then this measure is ergodic under the action

of { Tt| t E (Theorem 4 .1 ).
E ~ ~ dénote the s. a. Euclidean momenta constructed

in [7] which are canonically conjugate to the Euclidean fields. If F is a

vPm0,D-measurable function then

CONJECTURE. - If vmo,D is in C(mo) then it is ergodic under
the action of the group { }. This conjecture would have impor-
tant conséquences concerning the Markov property of the measure 
for half planes; Theorem 2.7 and [7].
- Let v be some PBC measure on G’ and let : 1 :03BD denote Wick ordering

with respect to the measure v [16] [37]. Let Q be an arbitrary, real poly-
nomial. Suppose

is continuous in f on ~. Then this functional satisfies the hypothèses of
Theorem 1 and hence there exists a measure vQ such that

for ai! / in ~.

(*) Récent results of the author imply that ..1.1 = 1, i. e. if P is a real, lower bounded
polynomial, P E 
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COROLLARY 4 . 4. - 1 ) Let P be a polynomial with degree P &#x3E; 3 such
that the infinite volume interacting PBC measure exists (Section 3 ; [6],
subsection 4. 1). Let vg be an arbitrary Gaussian PBC measure on ~’
with covariance operator C which is invariant and ergodic under the action
of the group { Tt|t E H }. Let Q be some polynomial.

Then for all Q the measures are invariant and ergodic under

The measures and are mutually singular (i. e. does not

define a (generalized) free, Euclidean field or a Wick polynomial of such
a field).

2) Let and be in el (mû) and assume that the measure 
is ergodic under {Tt 1 t (e. g. V:1o,DE C(mo) n C1 (mû)). Let Q(ç) = aç + b,
where a and b are arbitrary real numbers and let be defined as in (4. 8).

Then the measures and are mutually singular, unless

P1(03BE) = P2(:t ç + b) + d, a = :t l.lnparticular vP1m0,D and 03BDP2m0,D are mutually
singular, unless P1 - P2.

Proof. Proof of 1): It is rather obvious that the measures are

invariant and ergodic under { T~ 1 t E ~ ~. By Theorem 4. 3

where vs and v0C,Q are mutually singular, H-invariant PBC measures.
We now show that there exists a positive, measurable function G on ~’

such that :
G is vPm0,D-integrable, yet G is not v0C,Q-integrable.

Since À 0, this implies that À = 1 and hence 

are mutually singular. We distinguish two cases:

Case 1. - Q(~) = aç + b.
There exist constants cl and c2 such that

The measures v0C,Q and are mutually singular if Cl and c2 are not
finite. We may therefore assume that they are finite.
We now choose G = e w2 ~ where f is some function in ~. It

follows from result proven in [6] (subsections 2 . 2, 3 . 4, 3.5, and 4 .1 ) that

is finite for all f in !/. However, it is a well-known fact with an easy proof
that there exist functions f in G such that the function e:q2:v0C,Q(f) is nor

v0C,Q-integrable.
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Case 2. - Degree Q &#x3E; 1. Hère we choose G = We know

from Section 3 and from ref. [6] (subsection 4.1) that

On the other hand one knows that there exist functions f in ~ such that
not v0C-integrable. Therefore is not This

complètes the proof of 1 ).
Proof of 2): If ergodic under t E ~f } then obviousty 

is ergodic under as well. By Theorem 4.3 there exists

a measure vs and a number A E [0,1] such that

where vs and mutually singular PBC measures. Therefore there
exists a characteristic function ;~ on ~’ such that

and

We now assume that ~, # 1.

It is easy to see that the measure vrnô,D,Q is quasi-invariant under the
group { ~ ~ } since so (by hypothesis) and Q(~) = ~ + b.
Therefore the Radon-Nikodym derivative

exists and

Since exists we conclude that

where a. e. means « everywhere ». From (4.9) and (4.10)
we conclude that

Let P’ dénote the first derivative of the polynomial P and let

We set
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From (4 .11 ) we get

and hence (using the results of (7], section 4)

for arbitrary k and arbitrary test functions ... , gx.
(The Euclidean momenta n are defined in (4 . 7); the class is studied

in [7]. )
But (4.12) implies:

and + ~3) - P~(~) = 0 and therefore P1( ± ~ + ~3) = P 2( ç) + 
sincc P 1 (0) = P 2(0) = 0.
Thus ;. = 1 (see (4. 9)), unless P1(:t ç + (~) = P2(ç) + pl(/~), a = ± l,

b arbitrary. The équation P 2’ does not necessarily imply
À = 0, because there might exist several disjoint phases. This complètes
the proof of Corollary 4.4. Q. E. D.

Remarks. 2014 It is easy to see that Corollary 4 . 4, 1 ) implies that the phy-
sical field 03C6w obtained from Theorem 2. 6 by Wightman’s reconstruc-
tion theorem is not a (generalized) free field or a Wick polynomial of a
(generalized) free field. It is presumably not in the tempered Borchers
class of a free field with some arbitrary positive mass.
- The techniques of Theorem 4. 3 and Corollary 4.4 can also be applied

to the interacting measures with finite space cutoff but no
cutoff in the time-direction.
- One gets more explicit information on the support of the infinite

volume interacting measures by using continuity properties of the func-
tional Jo,D(f) in f See [3] [32]. If P is in C(mo) then is continuous on
the Sobolev space

for the shifted field

Proof: - The two-point Schwinger function has the représentation

for some measure p on [0, oo). Since thé P(~)2 mode! defines a canonicat

quantum field theory for Pe we have = 1. By thé mass-
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gap theorem of refs. [12] [l3] m* &#x3E; 0. Hence is continuous
’ 

Q. E. D.
For more général continuity properties, see [77]. For conséquences

concerning the support of see [3] [32].
- Let PI and P2 be polynomials in Then the measures

vmfl,D,Q (defined by (4.8)) and are mutually singular, unless

Q(ç) = ± Ç"+ b and + b) + d = P2(ç).

Proof. - Thc case where Q(ç) = a~ + b has already been analyzed
in Corollary 4.4, 2). We therefore assume that degree Q &#x3E; 1. Clearly
the measures and are invariant and ergodic under { Tt|t~ H },
since they are in the class C(mo). Hence they are mutually singular, unless
they are equal. From the above remark we know that the two point func-
tion continuous in f on ~ _ 1. However, from estimâtes proven
in 7 we know that

is not defined on all distributions f in ~ _ 1. Therefore the measures 
and are not equal. Q. E. D.
We now want to discuss the conséquences of Theorem 4.3 and Corol-

lary 4 . 4 concerning the (time 0 - ) and the relativistic quantum P( P)2
fields. Although our results hère are not very deep they represent a possibly
instructive example of how one can pass from a purely Euclidean statement
to a statement about the relativistic quantum fields. The example we want
to présent hère is :

Corollary 4.4 p Non-existence of the interaction picture,
} (i. e. Haag’s theorem [18] [40]).

We start our discussion with an analysis of the infinité volume (time 0 - )
interacting measure. Let J be a functional on G obeying Axioms A, B, and C,

the relativistic Hilbert space and Q the physical vacuum obtained
in Theorem 2.6. We know from Section, step 3, that for h a real-valued
function on [R 1 with  oo the (time 0 - ) fields = 

exist and are selfadjoint on the spaces L2(!f’, dv) and Moreover

see (2 . 7).
It therefore follows that the functional

has the properties
= l,A2~is continuous on yB (more precisely j(h) is continuous

in h in the norm Il . !!~), A3’) j is of positive type, A4’) j is real, and is
invariant under the group P of space-translations and under space-reflec-
tions. By Theorem 1, j is the Fourier transform of some P-invariant, space-
reflection invariant PBC measure  on G’1. The following result follows
directly from [1].
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PROPOSITION D’. - If Q is the Poincaré-invariant state in then

where hx(y) --_ h(y - x), and the measure J1. is P-ergodic. Theorem 4.3
tells us that two P-invariant, P-ergodic measures Pl and J1.2 on G’1 are either
equal or mutually singular.

APPLiCATION. - Let

For this class of polynomials we know that the hypothesis of Proposi-
tion D’ is true and its conclusions are therefore true for the functional

8) The measure associated with jmo is denoted by /~
and is P-invariant and P-ergodic.

COROLLARY 4 . 5. - 1) Let There exists a positive number Ào
such that the PBC measures ~~ are mutually singular for 0 ~ /).  Ào,
where ~c~ is an arbitrary Gaussian PBC measure with covariance C

which is P-invariant and 

2) Let P and P1 be in C(mo) and let Ai = 1 E Then
0  A  Ai, is co untable.

Proof. 1 ) It is proven in Section 4 of ref. [6] that all the moments of
the measure Pm0 (i. e. the (time 0 - ) Wightman distributions = (time 0 - )
Schwinger functions)

exist and are tempered. ;,

Let now P E C(mo). Then by results of Dimock [4] and the uniform esti-
mates on p~,.ô (hi , ... , hk) in section 4 of [6] the perturbation séries for
the moments ... , hk) is asymptotic at ~, = 0.

This result enables us to show that the truncated four-point function
..., X4)T (defined in the usual, inductive way [l8]) is différent

from 0 if the coupling constant ~ is small enough. However all the truncated
moments of the measure 0C are known to vanish. Application of Theorem 4 . 3
(with ~’ replaced and ~f replaced by &#x26;’) complètes the proof of 1 ).

2) Let It follows from the Cluster expansion in the form
of rer. [l3] that the (time 0 - ) Wightman distributions ... , hk)
are analytic in ~, in some complex neighbourhood of (0,~), where ~,1
is some positive number depending on P1.
By Dimock’s results [4] the functions ..., hk) are not constant

in ~,. Therefore the équations
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have at most countably many solutions in the interval [0,~J. This and

_ 

Theorem 4.3 complète the proof of Corollary 4. 5. Q. E. D.
There exist various generalizations of Corollary 4.5.

EXAMPLES. - Corollary 4.5, 2) still holds if one replaces by 
(see (4.8)) for some real polynomial Q.
- Let P1 and P2 be in C(mo)nC1(mo). Suppose the measures vP1m0,D

and have the Markov property ([24] and Theorem 2 . 7) for half planes.

Then P1m0 = P2m0 if and only if 03BDP1m0,D = P2, by Corollary 4.4,2).
Finally let us discuss the représentation of the canonicat (time 0 - )

commutation relations on the physical Hilbert space Jfw If P E C(mo)
it is known (12] that there exist selfadjoint momenta 7!:(~), g E ~1,
which are canonically conjugate to the (time 0 - ) fields ~p(h), h E ~1, i. e.

the Weyl relations 

hold on the Hilbert space and 7r(h) = i[H, (which is essentially
selfadjoint on any core for H). Let 9t be the C*-algebra generated by the...,...,. 

- 

J ~.._ _ " 
-

operators

The représentation 1tw of the Weyl algebra U on irreducible; see [7]
[10] [l2].

Using results proven in [2] [19] we can show that Corollary 4 . 5, 1 )
implies that the représentation 1tw of U is disjoint from the representa-
tion of U on the usual Fock space F, provided P E C(mo) and 0  A  Ào.
Similar conséquences follow from Corollary 4.5, 2).
We can prove a similar, yet more interesting result if we use the non-

commutative version of Theorem 4 . 3 and Corollary 4 . 4, 1 ) : If 
the physical vacuum Q == in known to be unique [12] [l3],
and the state defined by

where = i[H, ~p(h)] and H is the P(~p)2 Hamiltonian, is then ~-invariant
and P-ergodic. We set

where Qo is the Fock vacuum, ~pm is the free (time 0 - ) field of mass m &#x3E; 0

and 03C0m is its canonically conjugate momentum, Q(03BE) = :t ç + b.

THEOREM 4.6. - Ler P E Then rhe states and determine

disjoint, irreducible representations of the Weyl algebra 9î, unless b = 0,

Proo./ - Suppose the représentations determined by the states 
and are not disjoint. Then they are unitarily équivalent, since they
are irreducible. Since the states and are invariant and ergodic
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under {Tx| x by the non-commutative version of
Theorem 4.3. The state uniquely détermines the expectation values

By Haag’s theorem [40] thèse expectation values uniquely détermine the
Wightman distributions of a free field with mass m.

Therefore the states 03C9Pm0 and détermine identical Wightman dis-
tributions and hence identical Schwinger functions. But in the case at
hand the Schwinger functions détermine the infinité volume (interacting)
measure uniquely, and we conclude that vmo = But this contradicts

Corollary 4 . 4, 1 ) unless b = 0, P = 0, m = mo. Q. E. D.
Theorem 4.6 tells us that

or, equivalently, b = 0, P = 0, m = mo.
This means that the interaction picture does no~ exist if degree P &#x3E; 2.

It is shown in [7], section 6, that the Araki-functional [7]

has a perturbation séries in A which is asymptotic at A = 0. The result
is based on ref. [4].

Unfortunately such a result is not yet proven for the S-matrix, and there
is no abstract theorem which tells us that Corollary 4 . 4, 1 ) and Theo-
rem 4.6 imply S ~ I. We hope that the results of this section stimulate
an analysis of the properties of the S-matrix, whose existence is established
in [12].

Concluding Remarks.

We believe that this or the other result presented in this paper must
be known by différent authors. Axioms A and B have also been proposed
in [17] and are of course inspired by refs. [24] [29] [30] [31 ]. Section 2 is
partially based on results proven in [24] [29] [30]. Yet, Axiom C and a detailed
analysis of its conséquences, in particular a rigorous construction of (time 0 - )
quantum fields from the Euclidean fields, as well as the reconstruction of
relativistic quantum fields satisfying Wightman’s axioms from the generat-
ing functional of the Schwinger functions alone seem to be new. This func-
tional is the natural object to consider from a probabilistic point of view.
The additional structure with respect to the Osterwalder-Schrader axioms

given through Axiom A turns out to be useful to distinguish a given theory
satisfying Axioms A, B, and C from the one of the (generalized) free field.
This is illustrated by our results in Section 4.

Section 3 contains apparently the first systematic verification of axioms
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for Euclidean fields and of the Wightman axioms for the P(cp)2 models
with (half) Dirichlet boundary conditions.

Section 4 tells us that if two interaction polynomials Pi and P2 (with
convergent Cluster expansion) do not satisfy P 2(Ç) = Pi(± ~ + a) + b
they détermine différent models in the sensé that the Wightman distri-
butions are différent. The Wightman distributions remain different if

one replaces one of the quantum fields by a Wick polynomial. The corres-
ponding Euclidean measures are mutually singular. The interacting 
quantum field is never a (generalized) free field or a Wick polynomial of
a (generalized) free field.

R. Schrader has informed the author of independent results similar to
but slightly weaker than the ones proven in Corollary 4 . 4, 1 ) [34]. His
techniques of proof are différent from ours. B. Simon and J. Rosen have
also obtained independently results which seem to agrée essentially with
the ones summarized in Corollary 4 . 4, 1 ). Their techniques are similar
to ours. However, Corollaries 4 . 4, 2), 4 . 5 and Theorem 4.6 appear to be new.
We conclude with a problem : If S~ dénotes the S-matrix of a 

model. Show :

1 ) if degree P &#x3E; 2.
2) The perturbation séries of Smô in ~, is asymptotic at ~, = 0.
3) S~ ~ Smô unless P1(ç) = P2{:!: ç + a) + b.
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Note added in typescript.

Since the date when this paper was completed the following interesting
generalization of Corollary 4 . 4 has been found :

THEOREM. Let Pl and P2 be real, lower bounded poly-
nomials such’ as in (3.!4). Then the injinite volume interacting measures

and dvrnô are mutually singular unless P1 - P2 .
The relativistic quantum fields and 03C6P2 obtained jrom the measures

respectively, by reconstruction according to Theorem 2.6 belong
to dif f érent Borchers classes ’4) unless ~1 n
particular, if P~0, deg P &#x3E; 3 then 03C6P is not in the Borchers class the free
field. )

The proof of this Theorem which will appear in a forthcoming paper
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is based on the following Each component of an infinité volume
interacting P(~)2 measure ergodic under the « time »-translation
group ~f satisfies Axioms A, B, C, the hypothèses of Proposition D and
belongs to the class (see Section 4, définitions following Theorem 4. 3).

Furthermore we make use of the fact that lpp is a canonical field.
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