@article{AIHPA_1973__18_2_147_0, author = {Bros, J. and Iagolnitzer, D.}, title = {Causality and local analyticity : mathematical study}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {147--184}, publisher = {Gauthier-Villars}, volume = {18}, number = {2}, year = {1973}, mrnumber = {334726}, zbl = {0286.42016}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1973__18_2_147_0/} }
TY - JOUR AU - Bros, J. AU - Iagolnitzer, D. TI - Causality and local analyticity : mathematical study JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1973 SP - 147 EP - 184 VL - 18 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1973__18_2_147_0/ LA - en ID - AIHPA_1973__18_2_147_0 ER -
%0 Journal Article %A Bros, J. %A Iagolnitzer, D. %T Causality and local analyticity : mathematical study %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1973 %P 147-184 %V 18 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1973__18_2_147_0/ %G en %F AIHPA_1973__18_2_147_0
Bros, J.; Iagolnitzer, D. Causality and local analyticity : mathematical study. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 18 (1973) no. 2, pp. 147-184. http://www.numdam.org/item/AIHPA_1973__18_2_147_0/
[1]
, and (to be published in Ann. Institut Fourier).[2] Commun. Math. Phys., vol. 14, 1969, p. 15. This work used some basic physical ideas and results on Landau surfaces previously given by and , J. Math. Phys., vol. 10, 1969, p. 826. Further related results are given by in Lectures in Theoretical Physics, ed. by and and Breach, New York, 1969, p. 221. | MR
and ,[3] Phys. Rev., vol. 146, 1966, p. 1123. This work has been reviewed with a different method by and , Phys. Rev., vol. 155, 1967, p. 1685 and extended by , Some implications for scattering of short range interaction (Ph. D. Thesis, University of California, Berkeley).
,[4] See for instance : Théorie des Hyperfunctions (Lecture Notes in Mathematics n° 126, Springer Verlag, New York, 1970 and also the original paper by : , Theory of hyperfunctions I and II (J. Fac. Univ. Tokyo, t. 8, 1959-1960, p. 139-193 and 387-437.
,[5]
and (Private communications).[6] Séminaire Bourbaki, février 1968.
,[7] See for instance The Analytic S-matrix, Benjamin, New York, 1966, chap. I.
,[8] See for instance chap. 18-1 in Relativistic quantum fields, Mc Graw Hill, Boock Company, New York, 1965. | Zbl
and ,[9] See Brandeis Lectures in Particle Symmetries and Axiomatic Field Theory, vol. 1, ed. by and , Gordon and Breach, New York, 1966.
in the 1965[10] 14, n° 1, 1959, p. 168. | MR | Zbl
, Nuovo Cimento, vol.[11] For classical results in the theory of functions of several complex variables, see for instance the courses by
at Saclay, 1960 and by in Les Houches, Summer School, 1960.[12] See for instance Théories des Distributions, Hermann, Paris, 1968.
,[13] PCT, Spin-Statistics and all that, Benjamin, New York, 1964, chap. 2-5 and p. 94-95. | MR | Zbl
and ,[14] See for instance Hefer's theorem in Introduction to the theory of analytic functions of several complex variables, vol. 2, Providence, Rhode Island, American Mathematical Society, 1963.
,[15] Séminaire Schwartz, 1959-1960, Exposés 21-24 and Seminaire Cartan, exposé 12 (Secrétariat de Mathématique, 11, rue Pierre-Curie, 75005 Paris); , Ideals of Differential functions, Tata Institute, Bombay Oxford University Press, 1966. | MR
,[16] Uniqueness theorem and wave front sets for solutions of linear differential equations with analytic coefficients (preprint).
,[17] J. Math. Phys., vol. 1, 1960, p. 524. | Zbl
,[18]
(Private communication).