A class of Lie and Jordan algebras realized by means of the canonical commutation relations
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 14 (1971) no. 2, pp. 179-188.
@article{AIHPA_1971__14_2_179_0,
     author = {Tilgner, Hans},
     title = {A class of {Lie} and {Jordan} algebras realized by means of the canonical commutation relations},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {179--188},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {2},
     year = {1971},
     mrnumber = {289594},
     zbl = {0211.35604},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1971__14_2_179_0/}
}
TY  - JOUR
AU  - Tilgner, Hans
TI  - A class of Lie and Jordan algebras realized by means of the canonical commutation relations
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1971
SP  - 179
EP  - 188
VL  - 14
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1971__14_2_179_0/
LA  - en
ID  - AIHPA_1971__14_2_179_0
ER  - 
%0 Journal Article
%A Tilgner, Hans
%T A class of Lie and Jordan algebras realized by means of the canonical commutation relations
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1971
%P 179-188
%V 14
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1971__14_2_179_0/
%G en
%F AIHPA_1971__14_2_179_0
Tilgner, Hans. A class of Lie and Jordan algebras realized by means of the canonical commutation relations. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 14 (1971) no. 2, pp. 179-188. http://www.numdam.org/item/AIHPA_1971__14_2_179_0/

[1] H. Tilgner, A class of solvable Lie groups and their relation to the canonical formalism. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | Numdam | MR

[2] H. Tilgner, A spectrum generating nilpotent group for the relativistic free particle. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | Numdam | MR

[3] I. Segal, Quantized differential forms. Topology, t. 7, 1968, p. 147-172. | MR | Zbl

[4] J. Williamson, The exponential representation of canonical matrices. Am. J. Math., t. 61, 1939, p. 897-911. | MR | Zbl

[5] M. Koecher, Jordan algebras and their applications. University of Minnesota notes, Minneapolis, 1962. | Zbl

[6] M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z., t. 109, 1969, p. 349-392. | MR | Zbl

[7] M. Koecher, An elementary approach to bounded symmetric domains. Rice University, Houston, Texas, 1969. | MR | Zbl

[8] J. Schwinger, On angular momentum, In Quantum theory of angular momentum. Edited by L. C. Biedenharn, H. van Dam, Academic Press, New York, 1965. | MR

[9] C.P. Enz, Representation of group generators by boson or fermion operators. Application to spin perturbation. Helv. Phys. Acta, t. 39, 1966, p. 463-465.

[10] H.D. Döbner and T. Palev, Realizations of Lie algebras by rational functions of canonical variables. In « Proceedings of the IX. Internationale Universitätswochen für Kernphysik, 1970 in Schladming, Austria ». Springer Wien, to appear, 1970. | Zbl

[11] O. Loos, Symmetric spaces, I : General theory. Benjamin New York, 1969. | MR | Zbl

[12] O. Loos, Symmetric spaces, II : Compact spaces and classification. Benjamin, New York, 1969. | MR | Zbl

[13] S. Lang, Algebra. Addison-Wesley, Reading Mass, 1965. | MR | Zbl

[14] C. Chevalley, The construction and study of certain important algebras. The International Society of Japan, Tokio, 1955. | MR | Zbl