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On the existence of gravitational fields
which are stationary initially and finally
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Section A : .

Physique théorique.

SUMMARY. 2014 We consider gravitational fields which are initially statio-
nary and then become variable (and radiative) during a certain time interval.
We list the conditions which must be satisfied in order that the field become

again stationary. For comparison we consider the same problem in Max-
well theory (in special relativity).
We discuss in detail the special case in which 1) the two characteristic

hypersurfaces ~ and E’ marking the beginning and the end of the variable
field have both equations of the form u = const in the same Bondi frame
xIl = (u, r, 0, cp) and 2) in the region of the variable field the quantity a°
contains a finite number of time-dependent terms. We arrive at the following
result : If the field has additionally axial symmetry, it is impossible to satisfy
the first of the necessary conditions and consequently such a field cannot
exist. On the contrary, it is possible to satisfy this condition as well as
some of the subsequent conditions if the field has no axial symmetry.

RESUME. - Nous considérons des champs gravitationnels qui sont ini-
tialement stationnaires et deviennent variables (et radiatifs) pendant un
certain intervalle de temps. Nous établissons la liste des conditions qu’on
doit satisfaire pour que le champ devienne de nouveau stationnaire. Nous
considérons le meme problème dans la théorie de Maxwell (en relativité
restreinte).
Nous discutons en detail le cas spécial dans lequel 1) les deux hyper-
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surfaces caracteristiques X et X’ qui marquent le commencement et la fin
du champ variable ont des equations de la forme u = const dans le meme
repère de Bondi x" = (u, r, 0, qJ) et 2) dans le domaine du champ variable
la quantité 03C30 contient un nombre fin.i de termes variables. Nous arrivons
au résultat suivant : si le champ est à symétrie axiale, il est impossible de
satisfaire la premiere des conditions nécessaires, ce qui signifie qu’un tel
champ n’existe pas. Par contre on peut satisfaire cette conditon, ainsi que
quelques-unes des conditions suivantes, quand Ie champ n’est pas à symétrie
axiale.

I. INTRODUCTION

In this paper we shall examine gravitational fields containing (gravita-
tional) radiation. We shall consider also electromagnetic fields in special
relativity, but this only for the purpose of obtaining suggestions how to
approach the questions concerning gravitational radiation.
There are two possible ways to discuss electromagnetic radiation:

1) Direct calculation based on the general fonnula for the retarded solu-
tion, when the sources are given.

2) Asymptotic discussion of the field far from its sources for which we
shall assume that they are confined permanently in a limited region of the
3-dimensional space. The discussion is based on the development of the
field components in power series of I /r.
The second method of discussion is of little interest for the electromagne-

tic field itself. Its importance lies in the fact that it constitutes the model
of the only « exact » method we have at present for studying gravitational
radiation. A direct calculation of the gravitational radiation emitted by given
material sources is at present possible only in the frame of the « linearised »
Einstein theory. But we don’t know yet whether or how the linearised

theory could be made the first step of a satisfactory approximation method.
The asymptotic discussion of the field has drawn attention to a special

class of solutions which are non-stationary and at the same time contain
no radiation. The electromagnetic case has been discussed first [1] and it
has been found that the coefficients entering into the development
of the field components,
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are in the non-radiative case polynomials of degree n - 2 in the retarded
time t - r. The sources corresponding to fields of this type can be deter-
mined easily and it has been found that the source multipole of order n
is a polynomial in t of degree n - 1.

In the gravitational case the discussion of non-radiative fields has lead
to an essentially identical result [2, 3] : the coefficients of the development
in power series of 1 /r of gpy as well as of are polynomials in the retarded
time u. In this case it is of course not possible to determine the corres-
ponding sources exactly. However it seems very plausible that the

sources of a gravitational non-radiative field will have non-radiative

motions of a type similar to that found in the electromagnetic
case.

Non-radiative motions of electromagnetic sources-e. g. an electric

dipole increasing linearly with time-can in principle be obtained with
the help of non-electromagnetic forces. But this could be achieved only
during a limited time-internal. The simplest way to arrive at this conclu-
sion is by remarking that with the time interval increasing indefinitely
the non-radiative motion would require an infinite amount of energy.
Non-radiative fields are of some interest but only for theoretical conside-
rations.

The fields which are physically interesting and important are of the follow-
ing type. The field is non-stationary and radiative during a certain time-
interval, being stationary before and after this interval (fig. 1). The aim
of the present paper is a preliminary discussion of the question whether
gravitational fields of this type can exist in General Relativity.
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2. SOME GENERAL REMARKS

On figure 1 one sees at once that there are two regions of space-time
which we must consider separately. Firstly we have the region A contain-
ing the initial stationary field and the neighbouring part of the variable
one. The second region B contains the final stationary field and the part
of the variable field neighbouring to it.

Evidently we shall have to use in A a Bondi frame [4] ~ = (u, r, 0, qJ)
adapted to the initial stationary field. Let us assume that the hypersur-
face X is determined by the equation u = 0, with u  0 in the region of
the initial stationary field. Then all field quantities will be independent
of the retarded time coordinate u when u  0. On the hypersurface 1:
we have the propagation of the shock wave which represents the transition
from the stationary to the variable field. Therefore ~ will depend on the
details of the distribution of the material sources of the field as well as

of the physical perturbation which causes the transition from the stationary
to the variable state of these sources. This remark shows that the intro-
duction of special simplifying assumptions conceining X shoud be avoided.
Indeed such assumptions may be equivalent to the exclusion of physically
interesting types of motion of the sources.

For a better understanding of the situation let us consider the following
example. In the Minkowski space there are characteristic hypersurfaces
-the light cones-with vanishing shear,

Similarly in a Riemannian space representing a stationary solution of the
field equations

there are characteristic hypersurfaces with the property that the coefficient
of the first term in the development of a,

vanishes:

Imposing on E a condition of the type (2, 1) of (2, 2) would be equivalent
to restrictions imposed on the sources of the field. Indeed in the electro-

magnetic case (in Minkowski space) imposing the condition (2, 1) on X
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would mean essentially that we consider the field of a single point charge.
In the gravitational case the exact physical meaning of the condition (2, 2)
is not clear. But there is no doubt that this or any other condition imposed
on X would be equivalent to more or less strong restrictions imposed on
the sources of the field.

In the region B we shall have to use a Bondi frame x’P = (u’, r’, 0’, ql)
adapted to the stationary character of the field above the hypersurface I/.
On this hypersurface we have the propagation of the shock wave corres-
ponding to the transition from the variable to the final stationary field.
The hypersurface X’ will in general not belong to the family of characte-
ristic hypersurfaces determined by the equation u = const. We shall

consider only the case in which there are no other shock waves on any
hypersurface between E and EB The two frames (u, r, O,({J) and (u’, r’, 0’, ~p’)
will then be connected by a Bondi-Metzner transformation.

In the gravitational case the transformation xP - x’P will contain neces-
sarily a Lorentz part if the radiation emitted in the interval between X
and L’ has a non-vanishing total momentum (because of the recoil of the
sources). When this momentum vanishes the transformation x  - x’P
will reduce to a supertranslation and in special cases it may reduce to a
simple translation or to the identical transformation. In the last case the

hypersurface E’ will belong to the family of hypersurfaces u = const its
equation being u = Ut where ui is a positive constant.

Finally we have to mention the possibility of the surface E’ being at infinite
distance from E. In such a case the field would become again stationary
asymptotically for M 2014" oo. Since a shock wave on an infinitely distant
hypersurface doesn’t make sense, the transition from the variable to the
final stationary field will in this case occur without any discontinuities.
Therefore in this case the transformation xP - x’P will either contain a
Lorentz part, if the total momentum of the radiation is non-zero, or it will
be reducible to the identical transformation if the total momentum vanishes.

In this paper we shall examine in detail the special case of the hypersur-
face L’ belonging to the family u = const, with the constant ui finite or
infinite. The other cases will be considered only qualitatively in § 8.

3. THE NECESSARY AND SUFFICIENT CONDITIONS

For the description of the gravitational field we shall use the Newman-
Penrose formalism [5, 6]. We take over the notation as well as the results

obtained in these two papers. Further we choose the two angular coor-
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dinates so that they reduce to the ordinary polar coordinates 0, qJ at r -~ oo ;

i. e. we take as the asymptotic form of gpv for r - oo the Minkowski
metric

In our discussion we shall need explicitly the quantities 7 and’ll A’ A = 0,
1, ..., 4. They have developments of the form:

The coefficients 7" and are functions of u, 0, qJ.
The detailed discussion of the characteristic initial value problem has

shown that the field equations do determine completely the field when we
have chosen the coefficient (1° as a function of u, 0, qJ and the coefficients 

~P~ and ~o as functions of 0, qJ on the hypersurface u = 0. The dependence
and on u will be determined by a set of equations of motion

deduced from the field equations [7] :

In these equations (1) a dot denotes differentiation with respect to u and the
symbol 6 is the angular differential operator defining the spin spherical
harmonics [7]:

(1) In our formulae (3, 3) there is an extra factor 1/B/2 associated with each operator 6
or o, compared with the formulae of [7]. This is so because in [7] the Minkowski metric
has been written in the form
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x being of spin weight s. The right hand side of the equations of motion

(3, 3c) for ~o is well defined for every value n, but becomes very long and
complicated with increasing n. All remaining field quantities will be

determined by the other field equations in terms and The

equations (3, 3) are to be solved one after the other in the sequence indicated
in (3, 3). This is so because the quantity ~’2 enters into the right-hand side
of equation (3, 3b), the quantities and enter into the right-hand side
of the first of equations (3, 3c) and so on.
The fact that the field is stationary below X will be expressed in the frame A~

by the relations

which are valid for u  0. In order to obtain a field which will be statio-

nary above ~’ we have to take, in the frame x’Jl and for u’ &#x3E; 0

and then we must demand, again for u’ &#x3E; 0, the following infinite set of
conditions :

Actually we have to start with some initial stationary field which we have
chosen and consequently the frame x  is to be considered as given a priori.
On the contrary we have to determine the frame x’Jl and to satisfy the condi-
tions (3, 6) at the same time. This is what makes the problem we are
interested in so difficult in its general form.

In this paper we shall discuss in detail the special case in which the
hypersurface E’ belongs to the family u = const and has the equation 
The conditions (3, 6) become then identical in form with (3, 5) which now
must be demanded also for u &#x3E; ui.
For comparison we recapitulate briefly the corresponding situation in

the Maxwell theory (in special relativity). Instead of the ’ A we now have
the scalars 4YB, B = 0, 1, 2, representing the electromagnetic field [5].
They have the developments

POIKCARE, A-XI-l 5
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The role of ~° is now played by 4Y%. The field will be determined by the
field equations when we have chosen 0~ as a function of u, 0, qJ and the
coefficients ~? and D~ (n = 0, 1, 2, ...) as functions of 0, ~p for u = 0.
This is so because the Maxwell equations contain equations of motion for

1&#x3E;~ and 05 :

The stationary character of the field below 03A3 is expressed in the frame x
by the following relations, valid for u  0:

In order to obtain a field which is stationary above L’ we shall have to
take, in the frame and for u’ &#x3E; 0,

and then we must demand, again for u’ &#x3E; 0, the infinite set of conditions

In the special case of a hypersulface E’ having the equation u = ui
the conditions (3, 9) become identical with (3, 8), which must then be
demanded also for u &#x3E; ui .

If we have only satisfied explicitly the first N of the conditions (3, 6)
or (3, 9) we must in general expect that the field will be non-stationary
above L’, with non-radiative motions of the sources appearing in the multi-
poles of order n  N. However the following example will show that
the situation is essentially simpler in the electromagnetic case.

4. A SIMPLIFIED ELECTROMAGNETIC PROBLEM

We consider an electromagnetic field which is stationary for u  0
as well as for u &#x3E; ui. We simplify further by assuming that the

hypersurfaces u = const have vanishing shear, 7 = 0. The scalar D2
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has spin weight - 1. Therefore the coefficient will be of the form

The Vi are spherical harmonics and each term in the sum has spin weight
zero. The definition of the operator 9 is

if x has spin weight s.
The Maxwell equations are linear and allow superposition of solutions.

Therefore it will be sufficient to consider the case of a ~~ containing just
one term :

with any given values of I and m satisfying 7M j I ~ I. The coefficient «lm
will be a function of u in the interval 0 ~ u  it will vanish for u  0

and for u &#x3E; ui. Besides specifying 4Y% as a function of u, 0, qJ we have
to specify the quantities ~~ and ~o (n = 0, 1, 2, ... ) as functions of 0, lfJ
for u  0. Again because of the linearity of the field equations one sees
at once that it is sufficient to consider the case

With or = 0 the equations of motion (3, 7) are simplified as follows :

We shall need also the field equation determining 4Y] , n a 1 which is (when
(1 = 0) :

These equations enable us to determine the coefficients and C~. From
the first of (4, 3) we have
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We shall have to use the relations (see e. g. [7]) :

where SYI is the spin s spherical harmonic. Remembering that YI = oYi
we find

Therefore

and after integration

The second of (4, 3) takes now the form

and so we find after integration

Now we get from (4, 4) with n = 1:

because of (4, 5).
The last equation (4, 3) gives for n = 1

Therefore after integration
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In the same manner we calculate Of from cDÕ using (4, 4) and then Oo from
the last of (4, 3). After integration we find

Proceeding in the same way we find that the expression for 03A6n0 with n  1

contains as a factor the product

This result shows that when ~2 is of the form (4, 1) with given values
of 1 and m, the conditions (3, 9) are satisfied automatically for n &#x3E; 1. Thus
in order to obtain a field which is again stationary for u a ui we have to
satisfy only the conditions

The conditions (4, 10) are immediately seen to be equivalent to the following
1 conditions on the function 

When satisfies these conditions the field will be again stationary
for u &#x3E; ui.

It is to be expected that a similar situation will present itself in the more
general electromagnetic problem with the hypersurfaces u = const having
J # 0: the infinite number of conditions (3, 9) will reduce to a finite num-
ber N (with N depending on I, m and the structure of o~), the remaining
conditions (3, 9) being satisfied automatically. We did not check this

point directly.
There is no doubt however that the situation will be basically different

in the gravitational case. Because of the non-linearity of the field equations
the conditions (3, 6) when written in detail become more and more compli-
cated with increasing n and it is certain that none of them will be satisfied
automatically. Thus it is inevitable to think that the totality of the condi-
tions (3, 6) will only be satisfied in a restricted number of cases, if this will
be possible at all.
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5. THE GRAVITATIONAL CASE.

GENERAL CONSIDERATIONS

In the remaining part of this work we shall consider the gravitational
case. We start with the detailed discussion of the equations of motion (3, 3a)
and (3, 3b).

In the region of the stationary field we shall have

The equation of motion (3, 3b) has the consequence that the condition (3, 6a)
reduces to

This equation shows that ~’2 will be independent of 0, qJ. According
to (3, 3a) ~2 is also independent of u and therefore it will be a (complex)
constant:

M and M’ two real constants. This is not the final form of ~2 in the case
of a stationary field. Indeed the field equations give for ’~I~2 the following
additional relation :

In the stationary case (5, 2) reduces to

The quantity a° has spin weight 2 and therefore it will be of the form

(Terms with I  2 do not contribute to ~°.) The coefficients alm are func-
tions of u in general, reducing to constants in the stationary case.
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Let us calculate the quantity appearing in the right-hand side of (5, 2a) :

Taking into account that

and using (4, 5) we find

The conjugate-complex of this equation is

The validity of (5, 4) and (5, 4a) is not restricted to stationary fields.
Introducing (5, 4), (5, 4a) and (5, 1) in (5, 2a) we find

N ~w Yi = Y/ "" and consequently

1m

Remembering that in the right-hand side of (5, 5a) we have I ~ 2 we con-
clude :

Thus for a stationary field we have

~I’2 is a real constant and the generating function of a° is real. We recall

that M is the total energy of the stationary field.
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The next equation of motion is the first of (3, 3c). For a stationary
field it reduces to the relation

This relation determines, by an argument analogous to the preceeding
one, the structure of ~. Similarly the second of the equations (3, 3c)
determines the structure of Wl and so on. We shall not discuss these equa-
tions in the present work.
We shall now determine the quantity ~I’2(u) in the interval 0  u  ui

by integrating the equation of motion (3, 3a). We first rewrite this equa-
tion in the form

Integrating this equation from u = 0 to any u &#x3E; 0 we find :

.

Remembering that 0 for u = 0 and putting

we find finally :

For u &#x3E; Ut the field will be again stationary. Therefore

M 1 being the total energy of the final stationary field. Putting u = u 1
in (5, 9) we get

The left-hand side of this relation is a physically meaningful constant:
it is the loss of energy of the system because of the gravitational radiation
emitted in the interval 0  u  ui . The quantities appearing in the

right-hand side of (5, 10) will in general depend on 0, qJ. Therefore in
order to have (5, 10) satisfied we must demand that the terms of (5, 10)
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which depend on 0, qJ vanish. This will give us the first necessary condi-
tions for the existence of an initially and finally stationary gravitational
field of the special type we have described at the end of § 2.

In the next two sections we shall discuss these conditions in detail, first
for an axially symmetric field and then for a field without any symmetry.

6. THE AXIALLY SYMMETRIC

GRAVITATIONAL FIELD

All field quantities are now independent of the angle ~. Therefore the
sum in the right-hand side of (5, 3) will contain only terms with m = 0:

P, being the Legendre polynomials.
We are interested in a field which is non-stationary in the interval 

We must therefore assume that

for at least one of the coefficients ai appearing in (6, 1). If there is in (6, 1)
a term such that

one sees at once that this term will not give any contribution to the right-
hand side of equation (5, 10). It follows that this equation will not give
any restriction on the terms of the type (6, 3) and consequently 0-° can con-
tain any number of them. We shall write .

the terms in being of the type (6, 2) and the omitted terms of the
i

type (6, 3). Finally we shall introduce a last restrictive assumption : we

assume that the sum ~ in (6, 4) contains a finite number of terms;

1
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i. e. that the terms of the type (6, 2) have values I with a maximum :

In the axisymmetric case the discussion of equation (5, 10) will be sim-
plified if we use the functions cos 10 instead of the Legendre polynomials Pl.
Putting cos 03B8 = z we find immediately from Legendre’s equation

Since P, is a polynomial in z of degree I, it follows from (6, 6) that 86P~
will be again a polynomial of degree I in z. We can therefore write ~°
in the form

The new coefficients fii are linear combinations of the coefficients ai in
(6, 1). In particular the coefficent PL is equal to aL multiplied by a non-
vanishing numerical factor (depending on L). A similar reasoning leads
to the formula

The coefficients will be linear combinations of the fii. We shall not
need the explicite relations between yt and /~.

Introducing (6, 7) and (6, 8) in (5, 10) we see at once that the right-hand

side of (5,10) will be of the form Al cosle with 0  /  2L. Therefore

I

equation (5. 10) will lead to the relation

and to the conditions

Let us consider the last of these conditions,
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One sees immediately that a term proportional to cos2L03B8 is contained only
in the first term of the right-hand side of (5, 10) and that

Therefore from (6, 11) we conclude that

But this is contrary to our hypothesis : if we accept (6, 13) we shall have

(1° = 0 and consequently the field will contain no radiation.
We have thus proved the non-existence of axially symmetric fields of

the type we are considering, i. e. of fields having the following 3 properties :
1 ) The field is axially symmetric.
2) In a global frame x  the field is time-dependent and radiative in the

interval 0  u and stationary for u  0 and u &#x3E; ul.

3) The generating function of 6° contains a finite number of time-depen-
dent terms.

7. GRAVITATIONAL FIELDS

WITHOUT AXIAL SYMMETRY

We shall now consider a field without axial symmetry, but again satis-
fying the last two assumptions we listed at the end of § 6. We may announce

beforehand the puzzling result to which we shall arrive : when we drop the
property of axial symmetry we can construct gravitational fields satisfy-
ing (5, 10).
The general case with a° of the form (5, 3) would be very tiresome.

Since we are here interested in the question of existence of fields of this
type, it will be sufficient to consider a special case requiring simpler calcu-
lations. The special case we shall discuss in detail is the one in which the
formula (5, 3) for a° contains time dependent terms corresponding to
1 = 2 only. I. e. we shall consider a field in which

The omitted terms, which are independent of u, may correspond to any
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values of I: We noticed already that time-independent terms do not give
any contribution to the right-hand side of equation (5, 10). The coeffi-
cients % in (7, 1) are complex fonctions of u. In the intervals u  0 and

u &#x3E; ui, where the field is stationary, the coefficients a~ will be constants
satisfying the second of equations (5, 6) :

From (5, 4a) and (7, 1) we get

the omitted terms corresponding to time-independent coefficients alm.

Consequently the last two terms in (5, 10) give

with

We now have to calculate the first term in the right-hand side of (5, 10).
This requires some less simple calculations. We shall describe them

briefly, giving only the more important intermediate results.
Remembering that

we find immediately that 66Y7 will be of the form

where A7’ is a real function of O. Here we need the quantities A2 - A"’
which are to be found by direct calculation. The result is
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From (7, 1) and (7, 7) we find

It follows :

___ 7---

The products Am Am 
I will be calculated from (7, 8). It is easy to see

that they are of the form

the being numerical factors. With (7, 11 ) we get from (7, 10) :

Introducing now (7, 4) and (7, 12) into (5, 10) we get an equation of
the form

/*Ml . _-
The are linear combinations of the integrals J ( o and the di6e-

rences [ocj with numerical coefHcients. From (7, 13) we deduce the condi-
tions

and the relation which determines Mi:

In order to arrive at the explicite form of the conditions (7, 14) we have
to calculate the coefficients aj!m. For this it is sufficient to calculate the

products AmAm’, starting from (7, 8) and expressing the result in terms of
the Legendre functions The final results are listed in the appendix.



76 A. PAPAPETROU

With the values of determined in thi s way we can calculate the

quantities bml’ and thus arrive at the explicite form of the conditions (7, 14).
We shall give here directly the final results.
For [’ = 1, 3 and 4 and all possible values of/M(2014/’~/M~/’) we

get 8 complex conditions containing the integrals

with m # m’ and 3 real conditions containing the same integrals with
m = m’. These equations are:

For 1’ = 2 we get 2 complexe and 1 real conditions containing the diffe-
rences and integrals Bmm’. These conditions are :

Finally we get for 1’ = 0 the relation

expressing the total energy of the radiation emitted in the interval 0  u  ui
in terms of the (real, positive) quantities Boo, B11 and B22.

These conditions are not prohibitive : one can easily construct as an exam-
ple a system of 5 functions r:t.m(u) satisfying all these conditions. We thus

have the result that the condition (5, 10) can be satisfied when the axial
symmetry has been dropped.
We close this section with some remarks on the results we have obtained.

The first remark is that we can simplify the field we considered in (7, 1),
and still have the possibility to satisfy (5, 10). Indeed if we take

the conditions (7, 17), (7, 18) reduce to
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These conditions, imposed now on the 3 fonctions ao and ai, can also

be satisfied.

No other simplification of (7, 1) is possible. Indeed, if we take

we find from the last of (7, 17)

Since Boo and B22 are non-negative quantities, it follows Boo = B22 = o.
But then we shall have 0 = 0 and the field will contain no radiation.

.

Similarly if we take (10 = 0 then we have from the last of equations (7, 17)
and (7, 18) :

i. e. again the field will contain no radiation.

8. CONCLUDING REMARKS

The next question to be examined is whether in the case of a field without
axial symmetry we can satisfy more of the conditions (3, 6). This has been
done by Hallidy [8] for a slightly more special case. Hallidy assumes
that Q° - 0 for u  0 and u &#x3E; ul. In the interval 0  u  Ut he assumes
that (10 is of a form similar to (7, 1 ) :

with an arbitrarily chosen value of I (I &#x3E; 2). He then imposes the condi-
tions (3, 6a) and the first two of (3, 6b) in the stronger form

I. e. he demands the spherical symmetry of the initial as well as of the final
stationary field in the approximation he is considering. When these condi-

tions have been worked out in detail they lead to a number of conditions
on the functions alm(u). Hallidy proves, by constructing a special example,
that these conditions can be satisfied. Remembering that the quantity ~
is the one entering into the conservation law of Newman and Penrose [7]
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we see that in the example treated by Hallidy this law has been satisfied
explicitly (1).

Let us return to the case of axial symmetry. Evidently the question
of the existence of axially symmetric gravitational fields which are statio-
nary initially and finally is an important one. The negative result we found
in § 6 does not give the complete answer to this question. Indeed the case we

have discussed was a special one. In order to answer the question generally
we have to complete the discussion by examining the following possibilities.

1) The hypersurface E’ (fig. 1) does not belong to the family of hypersur-
faces u = const.

2) The expression (6, 4) or (6, 7) for (1° contains an infinite number of
time-dependent terms.

Actually it is almost certain that it will be impossible to satisfy the infi-
nite set of conditions (3, 6) with the hypersurface E’ at a finite distance
from E. It seems more reasonable to expect that the field will become

again stationary if this is possible at all-only at an infinite distance
from E. But then the field would tend to the stationary state in the asymp-
totic manner we described briefly in § 2. If the radiation carries away
a non-vanishing total momentum, the frame x’~ _ (u’, r’, 8’, cp’) will be
obtained from the initial frame ~ = (u, r, 0, q» by a Bondi-Metzner trans-
formation containing a Lorentz part. Because of the necessity of such a
transformation this case will be rather difficult to discuss.

However there is one special case in which a transformation of this type
will not be needed: if the field is axially symmetric (independent of q»
and is also symmetric with respect to the hyperplane 0 = x/2 the total
momentum of the radiation will be necessarily zero and consequently there
will be no recoil of the sources. Therefore in this case which is evidently
interesting from the physical point of view the field will become asympto-
tically stationary in the initial frame (u, r, 0, cp). It is easy to see that

it will be impossible to find a field of this type when one starts with a 6°
containing a finite number of time-dependent terms. The reason is the

following. The proof we gave in § 6 for the case in which 1:’ had the
equation u = ui remains valid when ul - co. Therefore what is left

for discussion is the case of a field having the two symmetries we mentionned
and a o-~ which contains an infinite number of time-dependent terms. This

(1) Hallidy has discussed also the case of an axially symmetric gravitational field, again
under the restriction 0’0 = 0 for u  0 and u &#x3E; ul, and arrived at the result we established
at the end of § 6. A similar result has been obtained by Unt [9].
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case seems to be relatively easier to discuss, but it has not been discussed
yet.
We conclude by stressing once again the important difference between

the gravitational and the electromagnetic problem (in special relativity).
If we start with an initially stationary gravitational field and wish to make
it stationary again, we have to satisfy an infinite number of non-linear
conditions. On the contrary in the electromagnetic case the conditions
are linear and their number essentially finite. Therefore we must expect
to meet, in the gravitational case, with situations which may appear strange
if we compare them with what we know in the electromagnetic case. A first

example of this kind is given by the negative result we found in § 6 about
axially symmetric gravitational fields.

APPENDIX

We give here the formulae obtained from (7, 8) for the products AmAm’ where

ANN. INST. POINCARE, A-X!-1 6
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