Random subgroups, automorphisms, splittings
[Sous-groupes aléatoires, automorphismes, scindements]
Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1363-1391.

Nous montrons que si H est un sous-groupe aléatoire d’un groupe libre de type fini 𝔽k, tout automorphisme de 𝔽k préservant H est intérieur. Nous prouvons un résultat similaire pour les sous-groupes aléatoires de groupes hyperboliques toriques, et plus généralement de groupes hyperboliques relativement à des sous-groupes sveltes. Ces résultats découlent de la non-existence de scindements au-dessus de sous-groupes sveltes qui sont relatifs à un élément aléatoire. Les sous-groupes aléatoires peuvent être définis en termes de marches aléatoires ou de boules dans le graphe de Cayley de 𝔽k.

Dans le cas du groupe libre 𝔽k, nous démontrons aussi le résultat déterministe suivant  : si un mot cycliquement réduit h𝔽k contient tous les mots réduits de longueur L, alors 𝔽k n’a pas de scindement relatif à h au-dessus d’un sous-groupe de rang (k-1)(L-2).

We show that, if H is a random subgroup of a finitely generated free group 𝔽k, only inner automorphisms of 𝔽k may leave H invariant. A similar result holds for random subgroups of toral relatively hyperbolic groups, and more generally of groups which are hyperbolic relative to slender subgroups. These results follow from non-existence of splittings over slender groups which are relative to a random group element. Random subgroups are defined using random walks or balls in a Cayley tree of 𝔽k.

In the free group 𝔽k, we also prove the following deterministic result: if a cyclically reduced word h𝔽k contains all reduced words of length L, then 𝔽k has no splitting relative to h over a subgroup of rank (k-1)(L-2).

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3426
Classification : 20F28, 20E08, 20F67, 20P05
Keywords: Random subgroups, random walk, splitting, automorphisms, free group, relatively hyperbolic group
Mot clés : Sous-groupes aléatoires, marche aléatoire, scindements, automorphismes, groupes libres, groupes relativement hyperboliques
Guirardel, Vincent 1 ; Levitt, Gilbert 2

1 Univ Rennes, CNRS, IRMAR - UMR 6625 35000 Rennes (France)
2 Laboratoire de Mathématiques Nicolas Oresme (LMNO) Université de Caen et CNRS (UMR 6139) 14000 Caen (France) (Pour Shanghai : Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France)
@article{AIF_2021__71_4_1363_0,
     author = {Guirardel, Vincent and Levitt, Gilbert},
     title = {Random subgroups, automorphisms, splittings},
     journal = {Annales de l'Institut Fourier},
     pages = {1363--1391},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.5802/aif.3426},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.3426/}
}
TY  - JOUR
AU  - Guirardel, Vincent
AU  - Levitt, Gilbert
TI  - Random subgroups, automorphisms, splittings
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 1363
EP  - 1391
VL  - 71
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.3426/
DO  - 10.5802/aif.3426
LA  - en
ID  - AIF_2021__71_4_1363_0
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%A Levitt, Gilbert
%T Random subgroups, automorphisms, splittings
%J Annales de l'Institut Fourier
%D 2021
%P 1363-1391
%V 71
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.3426/
%R 10.5802/aif.3426
%G en
%F AIF_2021__71_4_1363_0
Guirardel, Vincent; Levitt, Gilbert. Random subgroups, automorphisms, splittings. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1363-1391. doi : 10.5802/aif.3426. https://www.numdam.org/articles/10.5802/aif.3426/

[1] Antolín, Yago; Minasyan, Ashot; Sisto, Alessandro Commensurating endomorphisms of acylindrically hyperbolic groups and applications, Groups Geom. Dyn., Volume 10 (2016) no. 4, pp. 1149-1210 | DOI | MR | Zbl

[2] Bassino, Frédérique; Martino, Armando; Nicaud, Cyril; Ventura, Enric; Weil, Pascal Statistical properties of subgroups of free groups, Random Struct. Algorithms, Volume 42 (2013) no. 3, pp. 349-373 | DOI | MR | Zbl

[3] Bestvina, Mladen; Feighn, Mark Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl

[4] Bestvina, Mladen; Handel, Michael Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | MR | Zbl

[5] Bowditch, Brian H. Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl

[6] Cashen, Christopher H.; Manning, Jason F. Virtual geometricity is rare, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 444-455 | DOI | MR | Zbl

[7] Cohen, Daniel E. Combinatorial group theory: a topological approach, London Mathematical Society Student Texts, 14, Cambridge University Press, 1989, x+310 pages | DOI | MR

[8] Dahmani, François; Guirardel, Vincent; Osin, Denis V. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., Volume 245 (2017) no. 1156, p. v+152 | MR | Zbl

[9] Dunwoody, Martin J.; Sageev, Michah E. JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl

[10] Guirardel, Vincent; Levitt, Gilbert (in preparation.)

[11] Guirardel, Vincent; Levitt, Gilbert Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 599-663 | DOI | MR | Zbl

[12] Guirardel, Vincent; Levitt, Gilbert JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages

[13] Jitsukawa, Toshiaki Malnormal subgroups of free groups, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001) (Contemporary Mathematics), Volume 298, American Mathematical Society, 2002, pp. 83-95 | DOI | MR | Zbl

[14] Kapovich, Ilya; Schupp, Paul E.; Shpilrain, Vladimir Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups, Pac. J. Math., Volume 223 (2006) no. 1, pp. 113-140 | DOI | MR | Zbl

[15] Levitt, Gilbert; Paulin, Frédéric Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl

[16] Logan, Alan D. Every group is the outer automorphism group of an HNN-extension of a fixed triangle group, Adv. Math., Volume 353 (2019), pp. 116-152 | DOI | MR | Zbl

[17] Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory, Classics in Mathematics, Springer, 2001, xiv+339 pages (reprint of the 1977 edition) | DOI

[18] Maher, Joseph; Sisto, Alessandro Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings, Int. Math. Res. Not. (2019) no. 13, pp. 3941-3980 | DOI | MR | Zbl

[19] Osin, Denis V. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., Volume 179 (2006) no. 843, p. vi+100 | MR | Zbl

[20] Otal, Jean-Pierre Certaines relations d’équivalence sur l’ensemble des bouts d’un groupe libre, J. Lond. Math. Soc., Volume 46 (1992) no. 1, pp. 123-139 | DOI | Zbl

[21] Paulin, Frédéric The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl

[22] Paulin, Frédéric Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 147-167 | DOI | Numdam | Zbl

[23] Schupp, Paul E. A characterization of inner automorphisms, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 226-228 | DOI | MR | Zbl

  • Guirardel, Vincent; Levitt, Gilbert; Sklinos, Rizos Towers and the First-order Theories of Hyperbolic Groups, Memoirs of the American Mathematical Society, Volume 296 (2024) no. 1477 | DOI:10.1090/memo/1477
  • Genevois, Anthony Automorphisms of Graph Products of Groups and Acylindrical Hyperbolicity, Memoirs of the American Mathematical Society, Volume 301 (2024) no. 1509 | DOI:10.1090/memo/1509
  • Bestvina, Mladen; Feighn, Mark; Handel, Michael A McCool Whitehead type theorem for finitely generated subgroups of Out(F n ), Annales Henri Lebesgue, Volume 6 (2023), p. 65 | DOI:10.5802/ahl.159

Cité par 3 documents. Sources : Crossref