Nous prouvons qu’un espace stratifié compact satisfait la condition de courbure-dimension riemannienne
We prove that a compact stratified space satisfies the Riemannian curvature-dimension condition
Révisé le :
Accepté le :
Publié le :
Keywords: Curvature-dimension condition, stratified spaces, Ricci curvature lower bounds
Mot clés : Condition de courbure-dimension, espaces stratifiés, bornes inférieures de la courbure de Ricci
@article{AIF_2021__71_1_123_0, author = {Bertrand, J\'er\^ome and Ketterer, Christian and Mondello, Ilaria and Richard, Thomas}, title = {Stratified spaces and synthetic {Ricci} curvature bounds}, journal = {Annales de l'Institut Fourier}, pages = {123--173}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3393}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3393/} }
TY - JOUR AU - Bertrand, Jérôme AU - Ketterer, Christian AU - Mondello, Ilaria AU - Richard, Thomas TI - Stratified spaces and synthetic Ricci curvature bounds JO - Annales de l'Institut Fourier PY - 2021 SP - 123 EP - 173 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3393/ DO - 10.5802/aif.3393 LA - en ID - AIF_2021__71_1_123_0 ER -
%0 Journal Article %A Bertrand, Jérôme %A Ketterer, Christian %A Mondello, Ilaria %A Richard, Thomas %T Stratified spaces and synthetic Ricci curvature bounds %J Annales de l'Institut Fourier %D 2021 %P 123-173 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3393/ %R 10.5802/aif.3393 %G en %F AIF_2021__71_1_123_0
Bertrand, Jérôme; Ketterer, Christian; Mondello, Ilaria; Richard, Thomas. Stratified spaces and synthetic Ricci curvature bounds. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 123-173. doi : 10.5802/aif.3393. http://www.numdam.org/articles/10.5802/aif.3393/
[1] The Yamabe problem on stratified spaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1039-1079 | DOI | MR | Zbl
[2] Hölder regularity of solutions for Schrödinger operators on stratified spaces, J. Funct. Anal., Volume 269 (2015) no. 3, pp. 815-840 | DOI | MR | Zbl
[3] The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 2, pp. 241-310 | DOI | Numdam | MR | Zbl
[4] A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman & Hall/CRC, 2006, xiv+426 pages (edited by S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev) | MR
[5] A user’s guide to optimal transport, Modelling and optimisation of flows on networks (Lecture Notes in Mathematics), Volume 2062, Springer, 2013, pp. 1-155 | DOI | MR
[6] Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 969-996 | DOI | MR | Zbl
[7] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR
[8] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR
[9] Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., Volume 43 (2015) no. 1, pp. 339-404 | DOI | MR
[10] Short-time behavior of the heat kernel and Weyl’s law on
[11] Nonlinear diffusion equations and curvature conditions in metric measure spaces, Memoirs of the American Mathematical Society, 1270, American Mathematical Society, 2019
[12] On static three-manifolds with positive scalar curvature, J. Differ. Geom., Volume 107 (2017) no. 1, pp. 1-45 | DOI | MR
[13] Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models, Springer, 2014, pp. 3-23 | DOI | MR
[14] L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | DOI | MR
[15] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | MR
[16] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992, xiv+300 pages (translated from the second Portuguese edition by Francis Flaherty) | DOI | MR
[17] The globalization theorem for the Curvature-Dimension condition (2016) (https://arxiv.org/abs/1612.07623)
[18] Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1750007, 27 pages | DOI | MR
[19] Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | DOI | MR
[20] New formulas for the Laplacian of distance functions and applications (2018) (https://arxiv.org/abs/1803.09687)
[21] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR
[22] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR | Zbl
[23] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl
[24] On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | DOI | MR | Zbl
[25] Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl
[26] Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than
[27] Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches
[28] Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications., Ann. Math., Volume 176 (2012) no. 2, pp. 1173-1229 | DOI | Zbl
[29] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[30] On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal., Volume 275 (2018) no. 6, pp. 1368-1446 | DOI | MR | Zbl
[31] Classification of gravitational instanton symmetries, Commun. Math. Phys., Volume 66 (1979) no. 3, pp. 291-310 | DOI | MR
[32] On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., Volume 236 (2015) no. 1113, p. vi+91 | DOI | MR | Zbl
[33] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | MR | Zbl
[34] Kähler-Einstein metrics with edge singularities, Ann. Math., Volume 183 (2016) no. 1, pp. 95-176 | DOI | MR | Zbl
[35] Ricci curvature bounds for warped products, J. Funct. Anal., Volume 265 (2013) no. 2, pp. 266-299 | DOI | MR | Zbl
[36] Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl
[37] Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces, Volume 3 (2015), pp. 278-295 | DOI | MR | Zbl
[38] Sectional and intermediate Ricci curvature lower bounds via optimal transport, Adv. Math., Volume 329 (2018), pp. 781-818 | DOI | MR | Zbl
[39] Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z., Volume 238 (2001) no. 2, pp. 269-316 | DOI | MR | Zbl
[40] Globalization with probabilistic convexity, J. Topol. Anal., Volume 07 (2015) no. 04, pp. 719-735 | DOI | MR | Zbl
[41] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[42] The Yamabe problem on stratified spaces, Ph. D. Thesis, Laboratoire de Mathématiques Jean Leray (France) (2015) (https://hal.archives-ouvertes.fr/tel-01204671)
[43] The local Yamabe constant of Einstein stratified spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 1, pp. 249-275 | DOI | MR | Zbl
[44] An Obata singular theorem for stratified spaces, Trans. Am. Math. Soc., Volume 370 (2018), pp. 4147-4175 | DOI | MR | Zbl
[45] Alexandrov meets Lott-Villani-Sturm, Münster J. Math., Volume 4 (2011), pp. 53-64 | MR | Zbl
[46] Non-branching geodesics and optimal maps in strong
[47] Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR
[48] Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Volume 58 (2005) no. 7, pp. 923-940 | DOI | MR
[49] Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., Volume 16 (2000) no. 2, pp. 243-279 | DOI | MR | Zbl
[50] Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math., Volume 662 (2012), pp. 59-94 | DOI | MR | Zbl
[51] Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces (2017) (https://arxiv.org/abs/1706.09490)
[52] Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and
[53] Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl
[54] Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl
[55] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[56] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[57] K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR | Zbl
Cité par Sources :