Cet article porte sur la théorie homotopique des algèbres et des algèbres à homotopie près sur une opérade. Il fournit une description exhaustive de leurs propriétés homotopiques supérieures en utilisant la notion générale de morphisme appelé infini-morphisme. La méthode consiste à utiliser le calcul opéradique pour munir la catégorie des cogèbres sur la coopérade duale de Koszul ou sur la construction bar d’un nouveau type de structure de modèles, équivalente au sens de Quillen de celle des algèbres. Nous introduisons une notion d’équivalence homotopique explicite pour les infinis-morphismes, qui induit une description simple de la catégorie homotopique, et nous munissons la catégorie des algèbres à homotopie près d’une structure d’infinie-catégorie.
This paper studies the homotopy theory of algebras and homotopy algebras over an operad. It provides an exhaustive description of their higher homotopical properties using the more general notion of morphism called infinity-morphism. The method consists in using the operadic calculus to endow the category of coalgebras over the Koszul dual cooperad or the bar construction with a new type of model category structure, Quillen equivalent to that of algebras. We provide an explicit homotopy equivalence for infinity-morphisms, which gives a simple description of the homotopy category, and we endow the category of homotopy algebras with an infinity-category structure.
Révisé le :
Accepté le :
Publié le :
Keywords: Homotopical algebra, model category, coalgebras, operads
Mot clés : Algèbre homotopique, catégorie de modèles, cogèbres, opérades
@article{AIF_2020__70_2_683_0, author = {Vallette, Bruno}, title = {Homotopy theory of homotopy algebras}, journal = {Annales de l'Institut Fourier}, pages = {683--738}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {2}, year = {2020}, doi = {10.5802/aif.3322}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3322/} }
TY - JOUR AU - Vallette, Bruno TI - Homotopy theory of homotopy algebras JO - Annales de l'Institut Fourier PY - 2020 SP - 683 EP - 738 VL - 70 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3322/ DO - 10.5802/aif.3322 LA - en ID - AIF_2020__70_2_683_0 ER -
Vallette, Bruno. Homotopy theory of homotopy algebras. Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 683-738. doi : 10.5802/aif.3322. http://www.numdam.org/articles/10.5802/aif.3322/
[1] Cooperads and coalgebras as closed model categories, J. Pure Appl. Algebra, Volume 180 (2003) no. 1-2, pp. 1-23 | DOI | MR | Zbl
[2] Abstract homotopy theory and generalized sheaf cohomology, Trans. Am. Math. Soc., Volume 186 (1973), pp. 419-458 | DOI | MR | Zbl
[3] Algebraic models of non-connected spaces and homotopy theory of -algebras, Adv. Math., Volume 236 (2013), pp. 60-91 | DOI | MR | Zbl
[4] Transferring homotopy commutative algebraic structures, J. Pure Appl. Algebra, Volume 212 (2008) no. 11, pp. 2535-2542 | DOI | MR | Zbl
[5] What do homotopy algebras form?, Adv. Math., Volume 274 (2015), pp. 562-605 | DOI | MR | Zbl
[6] A tale of three homotopies, Appl. Categ. Struct., Volume 24 (2016) no. 6, pp. 845-873 | DOI | MR | Zbl
[7] Pre-Lie deformation theory, Mosc. Math. J., Volume 16 (2016) no. 3, pp. 505-543 | DOI | MR | Zbl
[8] Model structures for coalgebras, Proc. Am. Math. Soc., Volume 144 (2016) no. 4, pp. 1467-1481 | DOI | MR | Zbl
[9] Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology, Volume 15 (1976) no. 3, pp. 233-245 | DOI | MR | Zbl
[10] Function complexes in homotopical algebra, Topology, Volume 19 (1980) no. 4, pp. 427-440 | DOI | MR | Zbl
[11] Homotopy Batalin–Vilkovisky algebras, J. Noncommut. Geom., Volume 6 (2012) no. 3, pp. 539-602 | DOI | MR | Zbl
[12] Lie theory for nilpotent -algebras, Ann. Math., Volume 170 (2009) no. 1, pp. 271-301 | DOI | MR | Zbl
[13] A model category structure for differential graded coalgebras, 1999 (http://www.math.northwestern.edu/~pgoerss/papers/model.ps)
[14] Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (https://arxiv.org/abs/hep-th/9403055)
[15] Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272 | DOI | MR | Zbl
[16] Sur quelques points d’algèbre homologique, Tôhoku Math. J., Volume 9 (1957), pp. 119-221 | Zbl
[17] The homotopy theory of coalgebras over a comonad, Proc. Lond. Math. Soc., Volume 108 (2014) no. 2, pp. 484-516 | DOI | MR | Zbl
[18] Descent of Deligne groupoids, Int. Math. Res. Not. (1997) no. 5, pp. 223-239 | DOI | MR | Zbl
[19] DG coalgebras as formal stacks, J. Pure Appl. Algebra, Volume 162 (2001) no. 2-3, pp. 209-250 | DOI | MR | Zbl
[20] Model categories and their localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003, xvi+457 pages | MR | Zbl
[21] Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages | MR | Zbl
[22] Disconnected rational homotopy theory, Adv. Math., Volume 283 (2015), pp. 303-361 | DOI | MR | Zbl
[23] Sur les A-infini catégories (2003) (https://arxiv.org/abs/math/0310337)
[24] Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xviii+512 pages | MR | Zbl
[25] Homology, Classics in Mathematics, Springer, 1995, x+422 pages (Reprint of the 1975 edition) | Zbl
[26] DGA algebras as a Quillen model category. Relations to shm maps, J. Pure Appl. Algebra, Volume 13 (1978) no. 3, pp. 221-232 | DOI | MR | Zbl
[27] Homotopical algebra, Lecture Notes in Mathematics, 43, Springer, 1967 | MR | Zbl
[28] Rational homotopy theory, Ann. Math., Volume 90 (1969), pp. 205-295 | DOI | MR | Zbl
[29] Deformation theory with homotopy algebra structures on tensor products, Doc. Math., Volume 23 (2018), pp. 189-240 | MR | Zbl
[30] Model-categories of coalgebras over operads, Theory Appl. Categ., Volume 25 (2011), pp. 189-246 | MR | Zbl
[31] Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 269-331 | DOI | Numdam | MR | Zbl
Cité par Sources :