On démontre qu’une variété riemannienne complète vérifiant une inégalité de Sobolev euclidienne et dont la courbure de Ricci est petite dans une classe de Kato et à croissance euclidienne du volume. On obtient aussi des estimations spectrales, du noyau de la chaleur et du premier nombre de Betti des variétés riemanniennes compactes dont la courbure de Ricci est controlée dans une classe de Kato.
We obtain Euclidean volume growth results for complete Riemannian manifolds satisfying a Euclidean Sobolev inequality and a spectral type condition on the Ricci curvature. We also obtain eigenvalue estimates, heat kernel estimates, and Betti number estimates for closed manifolds whose Ricci curvature is controlled in the Kato class.
DOI : 10.5802/aif.3346
Keywords: Sobolev inequalities, volume growth, Green kernel, Doob transform
Mot clés : Inégalité de Sobolev, croissance du volume, noyau de Green, transformée de Doob
@article{AIF_2019__69_7_3095_0, author = {Carron, Gilles}, title = {Geometric inequalities for manifolds with {Ricci} curvature in the {Kato} class}, journal = {Annales de l'Institut Fourier}, pages = {3095--3167}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3346}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3346/} }
TY - JOUR AU - Carron, Gilles TI - Geometric inequalities for manifolds with Ricci curvature in the Kato class JO - Annales de l'Institut Fourier PY - 2019 SP - 3095 EP - 3167 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3346/ DO - 10.5802/aif.3346 LA - en ID - AIF_2019__69_7_3095_0 ER -
%0 Journal Article %A Carron, Gilles %T Geometric inequalities for manifolds with Ricci curvature in the Kato class %J Annales de l'Institut Fourier %D 2019 %P 3095-3167 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3346/ %R 10.5802/aif.3346 %G en %F AIF_2019__69_7_3095_0
Carron, Gilles. Geometric inequalities for manifolds with Ricci curvature in the Kato class. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3095-3167. doi : 10.5802/aif.3346. http://www.numdam.org/articles/10.5802/aif.3346/
[1] On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, Methods of functional analysis and theory of elliptic equations (Naples, 1982), Liguori Editore, 1982, pp. 19-52 | Zbl
[2] Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differ. Geom. Appl., Volume 4 (1994) no. 3, pp. 239-258 | DOI | MR | Zbl
[3] Riesz transform on manifolds and heat kernel regularity, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 6, pp. 911-957 | DOI | Numdam | MR | Zbl
[4] Étude des Transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, Séminaire de probabilités XIX (Lecture Notes in Mathematics), Volume 1247, Springer, 1983, pp. 145-174 | Zbl
[5] Heat kernel estimates and the relative compactness of perturbations by potentials (2016) (https://arxiv.org/abs/1606.00651)
[6] A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 213-230 | DOI | Numdam | MR | Zbl
[7] Inégalités de Faber-Krahn et conséquences, Actes de la table ronde de géométrie différentielle en l’honneur de M. Berger. (Luminy, 1992) (Séminaires et Congrès), Volume 1, Société Mathématique de France, 1996, pp. 205-232 | MR | Zbl
[8] Inégalités de Hardy sur les variétés riemaniennes non compactes, J. Math. Pures Appl., Volume 76 (1997) no. 10, pp. 883-891 | DOI | Zbl
[9] Riesz transform on manifolds with quadratic curvature decay, Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 749-788 | DOI | MR | Zbl
[10] Geometric and spectral estimates based on spectral Ricci curvature assumptions (2018) (https://arxiv.org/abs/1808.06965)
[11] An inverse spectral problem on surfaces, Comment. Math. Helv., Volume 81 (2006) no. 2, pp. 271-286 | DOI | MR | Zbl
[12] On the structure of spaces with Ricci curvature bounded below. I, J. Differ. Geom., Volume 46 (1997) no. 3, pp. 406-480 | DOI | MR | Zbl
[13] Ricci curvature and volume convergence, Ann. Math., Volume 145 (1997) no. 3, pp. 477-501 | DOI | MR | Zbl
[14] New monotonicity formulas for Ricci curvature and applications. I, Acta Math., Volume 209 (2012) no. 2, pp. 229-263 | DOI | MR | Zbl
[15] Ricci curvature and monotonicity for harmonic functions, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 3-4, pp. 1045-1059 | DOI | MR | Zbl
[16] Off-diagonal heat kernel lower bounds without Poincaré, J. Lond. Math. Soc., Volume 68 (2003) no. 3, pp. 795-816 | DOI | Zbl
[17] Gaussian heat kernel estimates: from functions to forms (2016) (https://arxiv.org/abs/1606.02423) | Zbl
[18] Riesz transforms for , Trans. Am. Math. Soc., Volume 351 (1999) no. 3, pp. 1151-1169 | DOI | Zbl
[19] Riesz transform and related inequalities on non-compact Riemannian manifolds, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1728-1751 | DOI | Zbl
[20] Large time behavior of heat kernels on forms, J. Differ. Geom., Volume 77 (2007) no. 3, pp. 353-384 | DOI | MR | Zbl
[21] Explicit constants for Gaussian upper bounds on heat kernels, Am. J. Math., Volume 109 (1987), pp. 319-333 | DOI | MR | Zbl
[22] Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math., Volume 58 (1992), pp. 99-119 | DOI | MR | Zbl
[23] norms of noncritical Schrödinger semigroups, J. Funct. Anal., Volume 102 (1991) no. 1, pp. 95-115 | DOI | Zbl
[24] A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform, Math. Ann., Volume 358 (2014) no. 1-2, pp. 25-68 | DOI | MR | Zbl
[25] Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | MR | Zbl
[26] The structure of complete stable minimal surfaces in -manifolds of non-negative scalar curvature, Commun. Pure Appl. Math., Volume 33 (1980), pp. 199-211 | DOI | Zbl
[27] Isoperimetric inequalities based on integral norms of Ricci curvature, Colloque Paul Lévy sur les processus stochastiques (Palaiseau, 1987) (Astérisque), Volume 157-158, Société Mathématique de France, 1988, pp. 191-216 | Numdam | MR | Zbl
[28] D’un résultat hilbertien à un principe de comparaison entre spectres, Ann. Sci. Éc. Norm. Supér., Volume 21 (1988) no. 4, pp. 561-591 | DOI | Zbl
[29] The heat equation on noncompact Riemannian manifolds, Mat. Sb., Volume 182 (1991) no. 1, pp. 55-87 translation in Math. USSR, Sb. 72 (1992), no. 1, p. 47-77 | Zbl
[30] Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoam., Volume 10 (1994) no. 2, pp. 395-452 | MR | Zbl
[31] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc., Volume 36 (1999) no. 2, pp. 135-249 | MR | Zbl
[32] Stability results for Harnack inequalities, Ann. Inst. Fourier, Volume 55 (2005) no. 3, pp. 825-890 | Numdam | MR | Zbl
[33] Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds, Proc. Am. Math. Soc., Volume 142 (2014) no. 4, pp. 1289-1300 | DOI | MR | Zbl
[34] Covariant Schrödinger Semigroups on Riemannian Manifolds, Operator Theory: Advances and Applications, 264, Birkhäuser, 2017 | Zbl
[35] A strong maximum principle for the Paneitz operator and a non-local flow for the -curvature, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2137-2173 | DOI | MR | Zbl
[36] On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier, Volume 51 (2001) no. 5, pp. 1437-1481 | DOI | Numdam | MR | Zbl
[37] The analysis of linear partial differential operators. III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | Zbl
[38] The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J., Volume 53 (1986) no. 2, pp. 503-523 | Zbl
[39] On the Sobolev constant and the spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Supér., Volume 13 (1980) no. 4, pp. 451-468 | Numdam | MR | Zbl
[40] Complete manifolds with positive spectrum, J. Differ. Geom., Volume 58 (2001) no. 3, pp. 501-534 | MR | Zbl
[41] Weighted poincaré inequality and rigidity of complete manifolds, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 6, pp. 921-982 | Numdam | Zbl
[42] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201 | Zbl
[43] Analyse sur les boules d’un opérateur sous-elliptique, Math. Ann., Volume 303 (1995) no. 4, pp. 713-740 | DOI | Zbl
[44] Positive solutions of elliptic equations, Pac. J. Math., Volume 75 (1978), pp. 219-226 | DOI | Zbl
[45] Continuity of solutions of parabolic and elliptic equations, Am. J. Math., Volume 80 (1958), pp. 931-954 | DOI | MR | Zbl
[46] The entropy formula for linear heat equation, J. Geom. Anal., Volume 14 (2004) no. 1, pp. 85-98 | MR | Zbl
[47] Heat kernel upper bound on Riemannian manifolds with locally uniform Ricci curvature integral bounds, J. Geom. Anal., Volume 27 (2017) no. 2, pp. 1737-1750 | DOI | MR | Zbl
[48] Li–Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class, Ann. Global Anal. Geom., Volume 55 (2019) no. 3, pp. 443-449 | DOI | MR | Zbl
[49] The Kato class on compact manifolds with integral bounds of Ricci curvature, Proc. Am. Math. Soc., Volume 145 (2017) no. 5, pp. 2199-2210 | DOI | MR | Zbl
[50] Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973 | Zbl
[51] A note on Poincaré, Sobolev and Harnack inequalities, Int. Math. Res. Not., Volume 1992 (1992) no. 2, pp. 27-38 | DOI | Zbl
[52] Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Note Series, 289, Cambridge University Press, 2002 | MR | Zbl
[53] Bach-flat asymptotically locally Euclidean metrics, Invent. Math., Volume 160 (2005) no. 2, pp. 357-415 | DOI | MR | Zbl
[54] Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math., Volume 196 (2005) no. 2, pp. 346-372 | DOI | MR | Zbl
[55] Hardy Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260 | DOI | MR | Zbl
[56] Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., Volume 28 (1975), pp. 201-228 | MR | Zbl
[57] Estimates of global bounds for some Schrödinger heat kernels on manifolds, Ill. J. Math., Volume 44 (1990) no. 3, pp. 556-573 | DOI | Zbl
[58] Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Am. Math. Soc., Volume 145 (2017) no. 7, pp. 3117-3126 | DOI | MR | Zbl
[59] Li–Yau gradient bounds under nearly optimal curvature conditions, J. Funct. Anal., Volume 275 (2018) no. 2, pp. 478-515 | DOI | MR | Zbl
[60] Subcriticality, positivity and gaugeability of the Schrödinger operator, Bull. Am. Math. Soc., Volume 23 (1990) no. 2, pp. 513-517 | DOI
Cité par Sources :