Le but de cet article est double. Premièrement, nous étudions des conditions suffisantes de convergence pour des séries aléatoires de fonctions propres dans . Les fonctions propres sont considérées par rapport à un opérateur elliptique de référence tel que l’opérateur de Laplace–Beltrami ou un opérateur de Schrödinger avec un potentiel confinant de l’espace euclidien. Cela constitue une généralisation d’un vieux résultat de Paley et Zygmund. Dans un deuxième temps, nous obtenons quelques estimées optimales de fonctions propres incluant une généralisation de l’inégalité de Bernstein. Nous montrons que ces deux thèmes sont intimement liés.
The goal of the paper is twofold. Firstly we study sufficient conditions of convergence for random series of eigenfunctions in . The eigenfunctions are considered with respect to a reference elliptic operator like the Laplace–Beltrami operator or a Schrödinger operator with a growing potential on the Euclidean space. That is a generalization of an old result due to Paley and Zygmund. Secondly, we obtain a few optimal bounds of eigenfunctions including a generalization of the Bernstein inequality. We show that the previous two themes are intimately linked.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3306
Keywords: Paley–Zygmund theorems, elliptic operators, wave equation, Sobolev embeddings
Mot clés : Théorèmes de Paley–Zygmund, opérateurs elliptiques, équations des ondes, injections de Sobolev
@article{AIF_2019__69_6_2723_0, author = {Imekraz, Rafik}, title = {Multidimensional {Paley{\textendash}Zygmund} theorems and sharp $L^p$ estimates for some elliptic operators}, journal = {Annales de l'Institut Fourier}, pages = {2723--2809}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3306}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3306/} }
TY - JOUR AU - Imekraz, Rafik TI - Multidimensional Paley–Zygmund theorems and sharp $L^p$ estimates for some elliptic operators JO - Annales de l'Institut Fourier PY - 2019 SP - 2723 EP - 2809 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3306/ DO - 10.5802/aif.3306 LA - en ID - AIF_2019__69_6_2723_0 ER -
%0 Journal Article %A Imekraz, Rafik %T Multidimensional Paley–Zygmund theorems and sharp $L^p$ estimates for some elliptic operators %J Annales de l'Institut Fourier %D 2019 %P 2723-2809 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3306/ %R 10.5802/aif.3306 %G en %F AIF_2019__69_6_2723_0
Imekraz, Rafik. Multidimensional Paley–Zygmund theorems and sharp $L^p$ estimates for some elliptic operators. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2723-2809. doi : 10.5802/aif.3306. http://www.numdam.org/articles/10.5802/aif.3306/
[1] Topologie des hypersurfaces nodales de fonctions aléatoires gaussiennes, Séminaire Bourbaki. Volume 2015/2016 (Astérisque), Volume 390, Société Mathématique de France, 2017 | Zbl
[2] Universality of the nodal length of bivariate random trigonometric polynomials, Trans. Am. Math. Soc., Volume 370 (2018) no. 12, pp. 8331-8357 | DOI | MR | Zbl
[3] properties for Gaussian random series, Trans. Am. Math. Soc., Volume 360 (2008) no. 8, pp. 4425-4439 | DOI | MR | Zbl
[4] The Schrödinger equation, Mathematics and Its Applications. Soviet Series, 66, Kluwer Academic Publishers, 1991 | Zbl
[5] Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971, vii+251 pages | Zbl
[6] On the Characterization of Pseudodifferential Operators (Old and New), Studies in Phase Space Analysis with Applications to PDEs (Progress in Nonlinear Differential Equations and their Applications), Volume 84, Springer, 2013, pp. 21-34 | DOI | MR | Zbl
[7] Construction de solutions pour des edp sur-critiques à données initiales aléatoires, Bourbaki seminar. Volume 2013/2014 (Astérisque), Volume 367-368, Société Mathématique de France, 2015 no. 1074 | Zbl
[8] Semi-classical calculus on manifolds with ends and weighted estimates, Ann. Inst. Fourier, Volume 61 (2011) no. 3, pp. 1181-1223 | DOI | MR | Zbl
[9] Degree theory and BMO. I: Compact manifolds without boundaries, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | MR | Zbl
[10] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | DOI | Zbl
[11] Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 6, pp. 917-962 | DOI | MR | Zbl
[12] Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[13] Random data Cauchy theory for supercritical wave equations II: A global existence result, Invent. Math., Volume 173 (2008) no. 3, pp. 477-496 | DOI | MR | Zbl
[14] Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 1-30 | DOI | MR | Zbl
[15] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl
[16] A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel, J. Fourier Anal. Appl., Volume 16 (2010) no. 5, pp. 629-657 | DOI | MR | Zbl
[17] Nodal sets of random eigenfunctions for the isotropic harmonic oscillator, Int. Math. Res. Not., Volume 2015 (2015) no. 13, pp. 4813-4839 | DOI | MR | Zbl
[18] Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques, Ann. Inst. Fourier, Volume 31 (1981) no. 3, pp. 169-223 | MR | Zbl
[19] Proprietes asymptotiques du spectre d’operateurs pseudo-differentiels sur , Commun. Partial Differ. Equations, Volume 7 (1982) no. 7, pp. 795-882 | DOI | Zbl
[20] Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser, 2011 | Zbl
[21] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968) no. 1, pp. 193-218 | DOI | MR | Zbl
[22] The analysis of linear partial differential operators. III : Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | Zbl
[23] Concentration et randomisation universelle de sous-espaces propres, Anal. PDE, Volume 11 (2018) no. 2, pp. 263-350 | DOI | MR | Zbl
[24] On random Hermite series, Trans. Am. Math. Soc., Volume 368 (2016) no. 4, pp. 2763-2792 | DOI | MR | Zbl
[25] Integrability of infinite sums of independent vector-valued random variables, Trans. Am. Math. Soc., Volume 212 (1975), pp. 1-36 | DOI | MR | Zbl
[26] On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961) no. 3, pp. 415-426 | DOI | MR | Zbl
[27] Some random series of functions, Heath Mathematical Monographs, D.C. Heath and Company, 1968 | Zbl
[28] Riesz summability of multiple Hermite series in spaces, Math. Z., Volume 219 (1995) no. 1, pp. 107-118 | DOI | MR | Zbl
[29] eigenfunction bounds for the Hermite operator, Duke Math. J., Volume 128 (2005) no. 2, pp. 369-392 | DOI | MR | Zbl
[30] Semiclassical estimates, Ann. Henri Poincaré, Volume 8 (2007) no. 5, pp. 885-916 | DOI | MR | Zbl
[31] Probability in Banach Spaces. Isoperimetry and processes, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 23, Springer, 1991 | Zbl
[32] Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, 3, Birkhäuser, 2010 | MR | Zbl
[33] Introduction à l’étude des espaces de Banach, Cours Spécialisés (Paris), 12, Société Mathématique de France, 2004 | Zbl
[34] Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, 101, Princeton University Press, 1981 | MR | Zbl
[35] Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Stud. Math., Volume 58 (1976), pp. 45-90 | DOI | Zbl
[36] Mean convergence of Hermite and Laguerre series. II, Trans. Am. Math. Soc., Volume 147 (1970) no. 2, pp. 433-460 | DOI | MR
[37] On some series of functions. I, Proc. Camb. Philos. Soc., Volume 26 (1930), pp. 337-357 | DOI | Zbl
[38] Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE, Volume 7 (2014) no. 4, pp. 997-1026 | DOI | MR | Zbl
[39] Random weighted Sobolev inequalities on and applications to Hermite functions, Ann. Henri Poincaré, Volume 16 (2015) no. 2, pp. 651-689 | DOI | MR | Zbl
[40] Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials, Commun. Partial Differ. Equations, Volume 33 (2008) no. 4, pp. 718-727 | DOI | Zbl
[41] Random weighted Sobolev inequalities and application to quantum ergodicity, Commun. Math. Phys., Volume 335 (2015) no. 3, pp. 1181-1209 | DOI | MR | Zbl
[42] Random series which are BMO or Bloch, Mich. Math. J., Volume 28 (1981) no. 3, pp. 259-266 | MR | Zbl
[43] Consequences of the choice of a particular basis of for the cubic wave equation on the sphere and the Euclidian space, Commun. Pure Appl. Anal., Volume 13 (2014) no. 3, pp. 991-1015 | MR | Zbl
[44] Topics in random matrix theory, Graduate Studies in Mathematics, 132, American Mathematical Society, 2012 | MR | Zbl
[45] Random matrices: The distribution of the smallest singular values, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 260-297 | MR | Zbl
[46] Theory of function spaces, Monographs in Mathematics, 78, Birkhäuser, 1983 | MR | Zbl
[47] Riemannian analogue of a Paley–Zygmund theorem, Sémin. Équ. Dériv. Partielles, Volume 2008-2009 (2010), XV, 14 pages | MR | Zbl
[48] Smoothing property for Schrödinger equations with potential superquadratic at infinity, Commun. Math. Phys., Volume 221 (2001) no. 3, pp. 573-590 | DOI | Zbl
[49] Local smoothing property and Strichartz inequality for Schrödinger operator with potentials superquadratic at infinity, J. Differ. Equations, Volume 202 (2004) no. 1, pp. 81-110 | DOI | Zbl
[50] Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 321-342 | DOI | MR | Zbl
[51] Trigonometric series. II, Cambridge University Press, 2002 | Zbl
Cité par Sources :