Nous caractérisons les mesures de défauts de séquences de fonctions propres de Laplace avec croissance
We characterize the defect measures of sequences of Laplace eigenfunctions with maximal
Révisé le :
Accepté le :
Publié le :
Keywords: eigenfunctions, defect measures, sup-norms
Mot clés : fonction propres, mesures de défaut, norme de supremum
@article{AIF_2019__69_4_1757_0, author = {Galkowski, Jeffrey}, title = {Defect measures of eigenfunctions with maximal $L^\infty $ growth}, journal = {Annales de l'Institut Fourier}, pages = {1757--1798}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3281}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3281/} }
TY - JOUR AU - Galkowski, Jeffrey TI - Defect measures of eigenfunctions with maximal $L^\infty $ growth JO - Annales de l'Institut Fourier PY - 2019 SP - 1757 EP - 1798 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3281/ DO - 10.5802/aif.3281 LA - en ID - AIF_2019__69_4_1757_0 ER -
%0 Journal Article %A Galkowski, Jeffrey %T Defect measures of eigenfunctions with maximal $L^\infty $ growth %J Annales de l'Institut Fourier %D 2019 %P 1757-1798 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3281/ %R 10.5802/aif.3281 %G en %F AIF_2019__69_4_1757_0
Galkowski, Jeffrey. Defect measures of eigenfunctions with maximal $L^\infty $ growth. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1757-1798. doi : 10.5802/aif.3281. https://www.numdam.org/articles/10.5802/aif.3281/
[1] Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., Volume 65 (1956), pp. 327-344 | DOI | MR | Zbl
[2] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl
[3] Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, 2010, xvi+343 pages | DOI | MR | Zbl
[4] Refined and microlocal Kakeya–Nikodym bounds for eigenfunctions in two dimensions, Anal. PDE, Volume 8 (2015) no. 3, pp. 747-764 | DOI | MR | Zbl
[5] Refined and Microlocal Kakeya–Nikodym Bounds of Eigenfunctions in Higher Dimensions, Commun. Math. Phys., Volume 356 (2017) no. 2, pp. 501-533 | MR | Zbl
[6] Introduction to dynamical systems, Cambridge University Press, 2002, xii+240 pages | DOI | MR | Zbl
[7] Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal., Volume 187 (2001) no. 1, pp. 247-261 | DOI | MR | Zbl
[8] Mathematical theory of scattering resonances (2017) (http://math.berkeley.edu/~zworski/res.pdf)
[9] Eigenfunction scarring and improvements in
[10] Lectures on analysis on metric spaces, Universitext, Springer, 2001, x+140 pages | DOI | MR | Zbl
[11] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[12]
[13] Semiclassical
[14] On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 16 (1952), pp. 325-352 | MR
[15] Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition, Funct. Anal. Appl., Volume 22 (1988) no. 3, pp. 213-223 | DOI | Zbl
[16] Concerning the
[17] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993, x+237 pages | DOI | MR | Zbl
[18] Kakeya–Nikodym averages and
[19] About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal., Volume 21 (2011) no. 1, pp. 150-173 | DOI | MR | Zbl
[20] Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., Volume 114 (2002) no. 3, pp. 387-437 | DOI | MR | Zbl
[21] Focal points and sup-norms of eigenfunctions, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 971-994 | DOI | MR | Zbl
[22] Focal points and sup-norms of eigenfunctions II: the two-dimensional case, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 995-999 | DOI | MR | Zbl
[23] Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132 | DOI | MR | Zbl
[24] Norms of modes and quasi-modes revisited, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001) (Contemporary Mathematics), Volume 320, American Mathematical Society, 2003, pp. 435-458 | DOI | MR | Zbl
[25] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :