Nous généralisons de nombreux résultats sur les groupes de Selmer des courbes elliptiques et des formes modulaires dans le cas non-ordinaire. Plus précisément, nous étudions les groupes de Selmer signés définis au moyen de la théorie du module de Wach sur les -extensions cyclotomiques. Nous commençons par donner une définition de groupes de Selmer résiduels et non-primitifs pour les nombres premiers non-ordinaires. Cela nous permet d’étendre les techniques développées par Greenberg (pour les courbes elliptiques ordinaires en ) et par Kim (pour les courbes elliptiques supersingulières en ) pour démontrer que si deux formes modulaires non-ordinaires sont congruentes, alors les invariants d’Iwasawa de leurs groupes de Selmer sont reliés de manière explicite. Nos résultats ont plusieurs applications. Dans un premier temps, ils nous permettent de relier la parité des rangs analytiques de telles formes modulaires en généralisant un résultat récent du premier auteur sur les courbes elliptiques supersingulières en . Dans un deuxième temps, nous pouvons démontrer une formule à la Kida pour les groupes de Selmer signés en généralisant les résultats de Pollack et Weston.
We extend many results on Selmer groups for elliptic curves and modular forms to the non-ordinary setting. More precisely, we study the signed Selmer groups defined using the machinery of Wach modules over -cyclotomic extensions. First, we provide a definition of residual and non-primitive Selmer groups at non-ordinary primes. This allows us to extend techniques developed by Greenberg (for -ordinary elliptic curves) and Kim (-supersingular elliptic curves) to show that if two -non-ordinary modular forms are congruent to each other, then the Iwasawa invariants of their signed Selmer groups are related in an explicit manner. Our results have several applications. First of all, this allows us to relate the parity of the analytic ranks of such modular forms generalizing a recent result of the first-named author for -supersingular elliptic curves. Second, we can prove a Kida-type formula for the signed Selmer groups generalizing results of Pollack and Weston.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3270
Keywords: Cyclotomic extensions, Selmer groups, modular forms, non-ordinary primes
Mot clés : Extensions cyclotomiques, groupes de Selmer, formes modulaires, nombres premiers non-ordinaires
@article{AIF_2019__69_3_1259_0, author = {Hatley, Jeffrey and Lei, Antonio}, title = {Arithmetic properties of signed {Selmer} groups at non-ordinary primes}, journal = {Annales de l'Institut Fourier}, pages = {1259--1294}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3270}, zbl = {07067431}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3270/} }
TY - JOUR AU - Hatley, Jeffrey AU - Lei, Antonio TI - Arithmetic properties of signed Selmer groups at non-ordinary primes JO - Annales de l'Institut Fourier PY - 2019 SP - 1259 EP - 1294 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3270/ DO - 10.5802/aif.3270 LA - en ID - AIF_2019__69_3_1259_0 ER -
%0 Journal Article %A Hatley, Jeffrey %A Lei, Antonio %T Arithmetic properties of signed Selmer groups at non-ordinary primes %J Annales de l'Institut Fourier %D 2019 %P 1259-1294 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3270/ %R 10.5802/aif.3270 %G en %F AIF_2019__69_3_1259_0
Hatley, Jeffrey; Lei, Antonio. Arithmetic properties of signed Selmer groups at non-ordinary primes. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1259-1294. doi : 10.5802/aif.3270. http://www.numdam.org/articles/10.5802/aif.3270/
[1] Bloch and Kato’s exponential map: three explicit formulas, Doc. Math., Volume Extra Vol. (2003), pp. 99-129 | MR | Zbl
[2] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | DOI | MR | Zbl
[3] Construction of some families of 2-dimensional crystalline representations, Math. Ann., Volume 329 (2004) no. 2, pp. 365-377 | MR | Zbl
[4] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[5] Formes modulaires et représentations -adiques, Séminaire Bourbaki 1968/69 (Lecture Notes in Mathematics), Volume 179, Springer, 1971, pp. 139-172 | DOI | Zbl
[6] The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004), pp. 663-727 | DOI | MR | Zbl
[7] Variation of Iwasawa invariants in Hida families, Invent. Math. (2006) no. 163, pp. 523-580 | DOI | MR | Zbl
[8] A generalization of the Cassels–Tate Pairing, J. Reine Angew. Math. (1990) no. 412, pp. 113-127 | MR | Zbl
[9] Iwasawa theory for -adic representations, Algebraic number theory - in honor of K. Iwasawa (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 97-137 | DOI | MR | Zbl
[10] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl
[11] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[12] An analogue of Kida’s formula for the Selmer groups of elliptic curves, J. Algebr. Geom., Volume 8 (1999) no. 3, pp. 581-601 | MR | Zbl
[13] Rank parity for congruent supersingular elliptic curves, Proc. Am. Math. Soc., Volume 145 (2017) no. 9, pp. 3775-3786 | DOI | MR | Zbl
[14] Arithmetic properties of signed Selmer groups at nonordinary primes, available at http://www.math.union.edu/~hatleyj/SignedSelmer.magma)
(Magma scripts related to[15] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Zbl
[16] The Iwasawa invariants of the plus/minus Selmer groups, Asian J. Math., Volume 13 (2009) no. 2, pp. 181-190 | MR | Zbl
[17] The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | MR | Zbl
[18] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[19] Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | MR | Zbl
[20] Wach modules and Iwasawa theory for modular forms, Asian J. Math., Volume 14 (2010) no. 4, pp. 475-528 | MR | Zbl
[21] Coleman maps and the -adic regulator, Algebra Number Theory, Volume 5 (2011) no. 8, pp. 1095-1131 | MR | Zbl
[22] On the asymptotic growth of Bloch-Kato-Shafarevich-Tate groups of modular forms over cyclotomic extensions, Can. J. Math., Volume 69 (2017) no. 4, pp. 826-850 | MR | Zbl
[23] Functional equations for multi-signed Selmer groups, Ann. Math. Qué., Volume 41 (2017) no. 1, pp. 155-167 | MR | Zbl
[24] Newforms and functional equations, Math. Ann., Volume 212 (1975) no. 4, pp. 285-315 | DOI | MR | Zbl
[25] Iwasawa theory and -adic -functions over -extensions, Int. J. Number Theory, Volume 10 (2014) no. 8, pp. 2045-2095 | DOI | MR | Zbl
[26] Some consequences of a formula of Mazur and Rubin for arithmetic local constants, Algebra Number Theory, Volume 7 (2013) no. 5, pp. 1101-1120 | DOI | MR | Zbl
[27] Théorie d’Iwasawa des représentations -adiques sur un corps local, Invent. Math., Volume 115 (1994) no. 1, pp. 81-161 | DOI | Zbl
[28] Fonctions -adiques des représentations -adiques, Astérisque, 229, Société Mathématique de France, 1995, 198 pages | Zbl
[29] Arithmétique des courbes elliptiques à réduction supersingulière en p, Exp. Math., Volume 12 (2003), pp. 155-186 | DOI | Zbl
[30] Kida’s formula and congruences of modular forms, Doc. Math., Volume extra volume (in honor of John Coates) (2006), pp. 615-630 | Zbl
[31] Mazur-Tate elements of non-ordinary modular forms, Duke Math. J., Volume 156 (2011) no. 3, pp. 349-385 | DOI | Zbl
[32] Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[33] Correspondance modulaire galois - quaternions pour un corps p-adique, Springer (1989), pp. 254-266 | DOI | Zbl
Cité par Sources :