Soient
Suppose
DOI : 10.5802/aif.3236
Mot clés : Variétés Kähleriénnes, théorie du pluripotentiel, classes d’énergie de Monge-Ampère, rayons géodésiques
@article{AIF_2018__68_7_3053_0, author = {Darvas, Tam\'as and Di Nezza, Eleonora and Lu, Chinh H.}, title = {$L^1$ metric geometry of big cohomology classes}, journal = {Annales de l'Institut Fourier}, pages = {3053--3086}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3236}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3236/} }
TY - JOUR AU - Darvas, Tamás AU - Di Nezza, Eleonora AU - Lu, Chinh H. TI - $L^1$ metric geometry of big cohomology classes JO - Annales de l'Institut Fourier PY - 2018 SP - 3053 EP - 3086 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3236/ DO - 10.5802/aif.3236 LA - en ID - AIF_2018__68_7_3053_0 ER -
%0 Journal Article %A Darvas, Tamás %A Di Nezza, Eleonora %A Lu, Chinh H. %T $L^1$ metric geometry of big cohomology classes %J Annales de l'Institut Fourier %D 2018 %P 3053-3086 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3236/ %R 10.5802/aif.3236 %G en %F AIF_2018__68_7_3053_0
Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. $L^1$ metric geometry of big cohomology classes. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 3053-3086. doi : 10.5802/aif.3236. https://www.numdam.org/articles/10.5802/aif.3236/
[1] Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 617-630 | Zbl
[2] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Zbl
[3] Fine topology, Šilov boundary, and
[4] From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit (2013) (https://arxiv.org/abs/1307.3008)
[5] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | Zbl
[6] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties (2011) (https://arxiv.org/abs/1111.7158, to appear in J. Reine Angew. Math.)
[7] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | Zbl
[8] A variational approach to the Yau–Tian–Donaldson conjecture (2015) (https://arxiv.org/abs/1509.04561)
[9] Regularity of weak minimizers of the K-energy and applications to properness and K-stability (2016) (https://arxiv.org/abs/1602.03114, to appear in Ann. Sci. Ãc. Norm. Supér.)
[10] A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015) no. 1, pp. 149-200 | Zbl
[11] The complex Monge–Ampère operator in pluripotential theory, 1997 (http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf)
[12] Pluripotential energy, Potential Anal., Volume 36 (2012) no. 1, pp. 155-176 | Zbl
[13] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[14] Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | Zbl
[15] The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000) no. 2, pp. 189-234 | Zbl
[16] On the constant scalar curvature Kähler metrics, existence results (2018) (https://arxiv.org/abs/1801.00656)
[17] Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann. Math., Volume 180 (2014) no. 2, pp. 407-454 | Zbl
[18] Test configuration and geodesic rays, Differential geometry, mathematical physics, mathematics and society (I) (Astérisque), Volume 321, Société Mathématique de France, 2008, pp. 139-167 | Zbl
[19] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | Zbl
[20] The Mabuchi completion of the space of Kähler potentials, Am. J. Math., Volume 139 (2017) no. 5, pp. 1275-1313 | Zbl
[21] Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics, Int. Math. Res. Not., Volume 2017 (2017) no. 22, pp. 6752-6777 erratum in ibid. 2017 (2017), no. 22, p. 7050 | Zbl
[22] Weak geodesic rays in the space of Kähler potentials and the class
[23] Geometric pluripotential theory on Kähler manifolds (2019) (https://arxiv.org/abs/1902.01982)
[24] Monotonicity of non-pluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | Zbl
[25] On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | Zbl
[26] Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Am. Math. Soc., Volume 369 (2017) no. 7, pp. 5069-5085 | Zbl
[27] Kiselman’s principle, the Dirichlet problem for the Monge–Ampére equation, and rooftop obstacle problems, J. Math. Soc. Japan, Volume 68 (2016) no. 2, pp. 773-796 | Zbl
[28] Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 347-387 | Zbl
[29] Complex analytic and differential geometry (2012) (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[30] Geometry and topology of the space of Kähler metrics on singular varieties, Compos. Math., Volume 154 (2018) no. 8, pp. 1593-1632 | Zbl
[31] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California symplectic geometry seminar (Translations. Series), Volume 2, American Mathematical Society, 1999, pp. 13-33 | Zbl
[32] The metric completion of the Riemannian space of Kähler metrics (2014) (https://arxiv.org/abs/1401.7857)
[33] Plurisubharmonic envelopes and supersolutions (2017) (https://arxiv.org/abs/1703.05254)
[34] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | Zbl
[35] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[36] Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017, xxiv+472 pages | Zbl
[37] Partial Legendre transformation for plurisubharmonic functions, Invent. Math., Volume 49 (1978), pp. 137-148 | Zbl
[38] Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1721-1745 | Zbl
[39] Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227-252 | Zbl
[40] Monotonicity of non-pluripolar Monge–Ampère masses (2017) (https://arxiv.org/abs/1703.01950)
[41] Regularity of geodesic rays and Monge–Ampère equations, Proc. Am. Math. Soc., Volume 138 (2010) no. 10, pp. 3637-3650 | Zbl
[42] Convex analysis, Princeton University Press, 1970, xviii+451 pages | Zbl
[43] Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | Zbl
[44] Complex Monge–Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992) no. 3, pp. 495-550 | Zbl
[45] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-441 | Zbl
Cité par Sources :