Nous démontrons que les groupes de présentation infinie satisfaisant la condition de petite simplification graphique
We prove that infinitely presented graphical
Accepté le :
Publié le :
DOI : 10.5802/aif.3215
Keywords: Graphical small cancellation, acylindrical hyperbolicity, divergence
Mot clés : Petite simplification graphique, hyperbolicité acylindrique, divergence
@article{AIF_2018__68_6_2501_0, author = {Gruber, Dominik and Sisto, Alessandro}, title = {Infinitely presented graphical small cancellation groups are acylindrically hyperbolic}, journal = {Annales de l'Institut Fourier}, pages = {2501--2552}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3215}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3215/} }
TY - JOUR AU - Gruber, Dominik AU - Sisto, Alessandro TI - Infinitely presented graphical small cancellation groups are acylindrically hyperbolic JO - Annales de l'Institut Fourier PY - 2018 SP - 2501 EP - 2552 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3215/ DO - 10.5802/aif.3215 LA - en ID - AIF_2018__68_6_2501_0 ER -
%0 Journal Article %A Gruber, Dominik %A Sisto, Alessandro %T Infinitely presented graphical small cancellation groups are acylindrically hyperbolic %J Annales de l'Institut Fourier %D 2018 %P 2501-2552 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3215/ %R 10.5802/aif.3215 %G en %F AIF_2018__68_6_2501_0
Gruber, Dominik; Sisto, Alessandro. Infinitely presented graphical small cancellation groups are acylindrically hyperbolic. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2501-2552. doi : 10.5802/aif.3215. https://www.numdam.org/articles/10.5802/aif.3215/
[1] Commensurating endomorphisms of acylindrically hyperbolic groups and applications, Groups Geom. Dyn., Volume 10 (2016) no. 4, pp. 1149-1210 | DOI | MR | Zbl
[2] Negative curvature in graphical small cancellation groups (2016) (to appear in Groups Geom. Dyn., http://arxiv.org/abs/1602.03767)
[3] Examples of random groups (2008) (www.mat.univie.ac.at/ arjantseva/Abs/random.pdf)
[4] Geometry of infinitely presented small cancellation groups, Rapid Decay and quasi-homomorphisms (2012) (http://arxiv.org/abs/1212.5280)
[5] Acylindrical hyperbolicity of cubical small-cancellation groups (2016) (http://arxiv.org/abs/1603.05725)
[6] Graphical small cancellation groups with the Haagerup property (2014) (http://arxiv.org/abs/1404.6807)
[7] Rips construction without unique product (2014) (http://arxiv.org/abs/arXiv:1407.2441)
[8] Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol., Volume 10 (2006), pp. 1523-1578 | DOI | Zbl
[9] Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012) no. 2, pp. 339-356 | DOI | Zbl
[10] Divergence, thick groups, and short conjugators, Ill. J. Math., Volume 58 (2014) no. 4, pp. 939-980 http://projecteuclid.org/euclid.ijm/1446819294 | MR | Zbl
[11] Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann., Volume 344 (2009) no. 3, pp. 543-595 | DOI | Zbl
[12] Bounded cohomology of subgroups of mapping class groups, Geom. Topol., Volume 6 (2002), pp. 69-89 | DOI | Zbl
[13] A short proof that a subquadratic isoperimetric inequality implies a linear one, Mich. Math. J., Volume 42 (1995) no. 1, pp. 103-107 | DOI | MR | Zbl
[14] Continuously many quasi-isometry classes of
[15] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | Zbl
[16] Small cancellation theory over Burnside groups (2017) (http://arxiv.org/abs/1705.09651)
[17] Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., Volume 245 (2017) no. 1156, v+152 pages | DOI | MR
[18] Relatively hyperbolic groups: geometry and quasi-isometric invariance, Comment. Math. Helv., Volume 84 (2009) no. 3, pp. 503-546 | DOI | Zbl
[19] Divergence in lattices in semisimple Lie groups and graphs of groups, Trans. Am. Math. Soc., Volume 362 (2010) no. 5, pp. 2451-2505 corrigendum in ibid. 370 (2018), no. 1, p. 749-754 | DOI | Zbl
[20] Tree-graded spaces and asymptotic cones of groups, Topology, Volume 44 (2005) no. 5, pp. 959-1058 (With an appendix by D. Osin and Sapir) | Zbl
[21] Divergence of geodesics in Teichmüller space and the mapping class group, Geom. Funct. Anal., Volume 19 (2009) no. 3, pp. 722-742 | DOI | Zbl
[22] Extending higher-dimensional quasi-cocycles, J. Topol., Volume 8 (2015) no. 4, pp. 1123-1155 | DOI | MR | Zbl
[23] Quadratic divergence of geodesics in
[24] Asymptotic invariants of infinite groups, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993, pp. 1-295 | Zbl
[25] Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 73-146 | DOI | Zbl
[26] Groups with graphical
[27] Infinitely presented
[28] Infinitely presented graphical small cancellation groups, University of Vienna (Austria) (2015) (Ph. D. Thesis)
[29] Gromov’s random monsters do not act non-elementarily on hyperbolic spaces (2017) (http://arxiv.org/abs/1705.10258)
[30] Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc., Volume 10 (2008) no. 2, pp. 315-349 | DOI | Zbl
[31] Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 330-354 | DOI | Zbl
[32] Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebr. Geom. Topol., Volume 13 (2013) no. 5, pp. 2635-2665 | DOI | Zbl
[33] Combinatorial group theory, Springer, 1977, xiv+339 pages (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89)
[34] CAT(0) spaces with polynomial divergence of geodesics, Geom. Dedicata, Volume 163 (2013), pp. 361-378 | DOI | MR | Zbl
[35] Acylindrical hyperbolicity of groups acting on trees, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1055-1105 | DOI | MR | Zbl
[36] On a small cancellation theorem of Gromov, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006) no. 1, pp. 75-89 http://projecteuclid.org/euclid.bbms/1148059334 | Zbl
[37] Lacunary hyperbolic groups, Geom. Topol., Volume 13 (2009) no. 4, pp. 2051-2140 (With an appendix by Michael Kapovich and Bruce Kleiner) | DOI | Zbl
[38] Small cancellation labellings of some infinite graphs and applications (2014) (http://arxiv.org/abs/1406.5015)
[39] Elementary subgroups of relatively hyperbolic groups and bounded generation, Int. J. Algebra Comput., Volume 16 (2006) no. 1, pp. 99-118 | DOI | Zbl
[40] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., Volume 179 (2006) no. 843, vi+100 pages | Zbl
[41] Acylindrically hyperbolic groups, Trans. Am. Math. Soc., Volume 368 (2016) no. 2, pp. 851-888 | DOI | MR | Zbl
[42] Strongly geodesically automatic groups are hyperbolic, Invent. Math., Volume 121 (1995) no. 2, pp. 323-334 | DOI | MR | Zbl
[43] Some problems in combinatorial group theory, Groups—Korea 1988 (Pusan, 1988) (Lecture Notes in Math.), Volume 1398, Springer, 1989, pp. 146-155 | DOI | Zbl
[44] Contracting elements and random walks (2011) (to appear in J. Reine Angew. Math., http://arxiv.org/abs/1112.2666)
[45] On metric relative hyperbolicity (2012) (http://arxiv.org/abs/1210.8081)
[46] Quasi-convexity of hyperbolically embedded subgroups, Math. Z., Volume 283 (2016) no. 3-4, pp. 649-658 | DOI | MR | Zbl
[47] Rips-Segev torsion-free groups without unique product, J. Algebra, Volume 438 (2015), pp. 337-378 | Zbl
[48] Appendix. Small cancellation groups, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progress in Mathematics), Volume 83, Birkhäuser, 1990, pp. 227-273 | Zbl
[49] Asymptotic cones of finitely generated groups, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 203-208 | DOI | Zbl
Cité par Sources :