On s’intéresse aux plongements algébriques du groupe de Cremona complexe à variables dans des groupes de transformations birationnelles d’une varété algébrique . D’abord on regarde un plongement de dans qui était découvert par Gizatullin. Puis on donne une classification de tous les plongements algébriques de dans pour des variétés de dimension et on généralise partiellement ce résultat aux plongements algébriques de dans , où la dimension de est (pour tout ). On obtient notamment une classification de toutes les action régulières de sur des variétés projectives lisses de dimension qui s’étendent vers des actions rationnelles de .
We look at algebraic embeddings of the complex Cremona group in variables to the group of birational transformations of an algebraic variety . First we study geometrical properties of an example of an embedding of into that is due to Gizatullin. In a second part, we give a full classification of all algebraic embeddings of into , where is a variety of dimension 3 and generalize this result partially to algebraic embeddings of into , where the dimension of is , for arbitrary . In particular, this yields a classification of all algebraic -actions on smooth projective varieties of dimension that can be extended to rational actions of .
Révisé le :
Accepté le :
Publié le :
Keywords: Cremona group, rational group actions, algebraic group actions
Mot clés : Groupe de Cremona, actions rationnelles des groupes
@article{AIF_2018__68_1_53_0, author = {Urech, Christian}, title = {On homomorphisms between {Cremona} groups}, journal = {Annales de l'Institut Fourier}, pages = {53--100}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3151}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3151/} }
TY - JOUR AU - Urech, Christian TI - On homomorphisms between Cremona groups JO - Annales de l'Institut Fourier PY - 2018 SP - 53 EP - 100 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3151/ DO - 10.5802/aif.3151 LA - en ID - AIF_2018__68_1_53_0 ER -
Urech, Christian. On homomorphisms between Cremona groups. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 53-100. doi : 10.5802/aif.3151. http://www.numdam.org/articles/10.5802/aif.3151/
[1] Lie group actions in complex analysis, Aspects of Mathematics, 27, Friedr. Vieweg & Sohn, 1995, viii+201 pages | DOI | Zbl
[2] Geometry of the plane Cremona maps, Lecture Notes in Mathematics, 1769, Springer, 2002, xvi+257 pages | DOI | MR | Zbl
[3] Stable bundles with on rational surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Volume 54 (1990) no. 2, pp. 227-241 | Zbl
[4] Variétés stablement rationnelles non rationnelles, Ann. Math., Volume 121 (1985) no. 2, pp. 283-318 | DOI | MR | Zbl
[5] Remarks on the action of an algebraic torus on I, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 14 (1966), pp. 177-181 | Zbl
[6] Conjugacy classes of affine automorphisms of and linear automorphisms of in the Cremona groups, Manuscr. Math., Volume 119 (2006) no. 2, pp. 225-241 | DOI | MR | Zbl
[7] Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Volume 14 (2009) no. 2, pp. 249-285 | DOI | MR | Zbl
[8] Symplectic birational transformations of the plane, Osaka J. Math., Volume 50 (2013) no. 2, pp. 573-590 http://projecteuclid.org/euclid.ojm/1371833501 | MR | Zbl
[9] Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 2, pp. 507-533 | MR | Zbl
[10] Topologies and structures of the Cremona groups, Ann. Math., Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | MR | Zbl
[11] The group of Cremona transformations generated by linear maps and the standard involution, Ann. Inst. Fourier, Volume 65 (2015) no. 6, pp. 2641-2680 | DOI | Zbl
[12] Homomorphismes “abstraits” de groupes algébriques simples, Ann. Math., Volume 97 (1973), pp. 499-571 | DOI | MR | Zbl
[13] Spherical Varieties: An Introduction, Topological methods in algebraic transformation groups (Progress in Mathematics), Volume 80, Springer, 1989, pp. 11-26 | Zbl
[14] Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 5, pp. 569-594 | DOI | Zbl
[15] Endomorphismes des variétés homogènes, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 237-262 | MR | Zbl
[16] Morphisms between Cremona groups, and characterization of rational varieties, Compos. Math., Volume 150 (2014) no. 7, pp. 1107-1124 | DOI | MR | Zbl
[17] Holomorphic actions, Kummer examples, and Zimmer program, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 3, pp. 447-489 | DOI | MR | Zbl
[18] Birational maps preserving the contact structure on (2016) (http://arxiv.org/abs/1602.08866v1, to appear in J. Math. Soc. Japan)
[19] The Sarkisov program for Mori fibred Calabi-Yau pairs, Algebr. Geom., Volume 3 (2016) no. 3, pp. 370-384 | DOI | Zbl
[20] Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 507-588 | DOI | MR | Zbl
[21] On the Cremona group: some algebraic and dynamical properties, Université Rennes 1 (France) (2006) https://tel.archives-ouvertes.fr/tel-00125492 (Theses https://tel.archives-ouvertes.fr/tel-00125492/file/these.pdf)
[22] Sur les automorphismes du groupe de Cremona, Compos. Math., Volume 142 (2006) no. 6, pp. 1459-1478 | DOI | MR | Zbl
[23] Some properties of the group of birational maps generated by the automorphisms of and the standard involution (2015), pp. 893-905 (http://arxiv.org/abs/1403.0346v1) | Zbl
[24] La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, Springer, 1971, viii+129 pages | MR | Zbl
[25] Rational surface maps with invariant meromorphic two-forms, Math. Ann., Volume 364 (2016) no. 1-2, pp. 313-352 | DOI | MR | Zbl
[26] Classical algebraic geometry. A modern view, Cambridge Univ. Press, 2012, xii+639 pages (A modern view) | DOI | MR | Zbl
[27] Sui gruppi continui di trasformazioni cremoniane nel piano, Rend. Accad. Lincei, 1er sem, Volume 5 (1893) no. 1, pp. 468-473 | Zbl
[28] Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer, 1991, xvi+551 pages | DOI | Zbl
[29] On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996) (London Math. Soc. Lecture Note Ser.), Volume 264, Cambridge University Press, 1999, pp. 111-150 | DOI | MR | Zbl
[30] Klein’s conjecture for contact automorphisms of the three-dimensional affine space, Mich. Math. J., Volume 56 (2008) no. 1, pp. 89-98 | DOI | MR | Zbl
[31] Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000, vi+310 pages | MR | Zbl
[32] Cremona transformation in Plane and Space, Cambridge University Press, 1927
[33] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975, xiv+247 pages | Zbl
[34] Une preuve géométrique du théorème de Jung, Enseign. Math., Volume 48 (2002) no. 3-4, pp. 291-315 | MR | Zbl
[35] On the genus of birational maps between threefolds, Automorphisms in birational and affine geometry (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer, 2014, pp. 141-147 | DOI | MR | Zbl
[36] Une remarque sur la génération du groupe de Cremona, Bol. Soc. Bras. Mat., Nova Sér., Volume 30 (1999) no. 1, pp. 95-98 | DOI | MR | Zbl
[37] Tori in the Cremona groups, Izv. Ross. Akad. Nauk Ser. Mat., Volume 77 (2013) no. 4, pp. 103-134 | MR | Zbl
[38] Lie groups. An approach through invariants and representations, Universitext, Springer, 2007, xxiv+596 pages | MR | Zbl
[39] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (Translated from the French by Marvin Jay Greenberg) | MR | Zbl
[40] Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki 2008/2009 (Astérisque), Volume 332, Société Mathématique de France, 2010, pp. 75-100 | Zbl
[41] A note on automorphisms of the affine Cremona group, Math. Res. Lett., Volume 20 (2013) no. 6, pp. 1177-1181 | DOI | MR | Zbl
[42] Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | DOI | MR | Zbl
[43] Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Volume 87 (1982), pp. 59-78 http://projecteuclid.org/euclid.nmj/1118786899 | DOI | MR | Zbl
[44] On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Volume 88 (1982), pp. 213-246 http://projecteuclid.org/euclid.nmj/1118787013 | DOI | MR | Zbl
[45] On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 349-436 | MR | Zbl
[46] Subgroups of Cremona groups, University of Basel (Switzerland) / University of Rennes 1 (France) (2017) (Ph. D. Thesis)
[47] On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | Zbl
[48] Birational transformations in 4-space and 5-space, Bull. Am. Math. Soc., Volume 44 (1938) no. 4, pp. 272-278 | DOI | MR | Zbl
[49] Regularization of birational group operations in the sense of Weil, J. Lie Theory, Volume 5 (1995) no. 2, pp. 207-224 | Zbl
[50] The -periodic subvarieties for an automorphism of positive entropy on a compact Kähler manifold, Adv. Math., Volume 223 (2010) no. 2, pp. 405-415 | DOI | MR | Zbl
Cité par Sources :