Nous prouvons que tout attracteur partiellement hyperbolique de dimension finie et avec singularité(s) admet une unique mesure SRB. La preuve utilise des outils simples et généraux du formalisme thermodynamique et ne nécessite pas de recourir à une section de Poincaré.
We prove the existence and the uniqueness of the SRB measure for any singular hyperbolic attractor in dimension . The proof does not use Poincaré sectional maps, but uses basic properties of thermodynamical formalism.
Révisé le :
Accepté le :
Publié le :
Keywords: partially hyperbolic singular flows, thermodynamical formalism, equilibrium states, SRB and physical measures
Mot clés : flots partiellement hyperboliques, formalisme thermodynamique, état d’équilibre, mesures SRB et physiques
@article{AIF_2017__67_6_2703_0, author = {Leplaideur, Renaud and Yang, Dawei}, title = {SRB measures for higher dimensional singular partially hyperbolic attractors}, journal = {Annales de l'Institut Fourier}, pages = {2703--2717}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3148}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3148/} }
TY - JOUR AU - Leplaideur, Renaud AU - Yang, Dawei TI - SRB measures for higher dimensional singular partially hyperbolic attractors JO - Annales de l'Institut Fourier PY - 2017 SP - 2703 EP - 2717 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3148/ DO - 10.5802/aif.3148 LA - en ID - AIF_2017__67_6_2703_0 ER -
%0 Journal Article %A Leplaideur, Renaud %A Yang, Dawei %T SRB measures for higher dimensional singular partially hyperbolic attractors %J Annales de l'Institut Fourier %D 2017 %P 2703-2717 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3148/ %R 10.5802/aif.3148 %G en %F AIF_2017__67_6_2703_0
Leplaideur, Renaud; Yang, Dawei. SRB measures for higher dimensional singular partially hyperbolic attractors. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2703-2717. doi : 10.5802/aif.3148. http://www.numdam.org/articles/10.5802/aif.3148/
[1] Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2431-2485 | DOI | MR | Zbl
[2] Dynamical properties of singular-hyperbolic attractors, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 1, pp. 67-87 | DOI | MR | Zbl
[3] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 2008, viii+75 pages | MR | Zbl
[4] The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975) no. 3, pp. 181-202 | DOI | MR | Zbl
[5] No or infinitely many a.c.i.p. for piecewise expanding maps in higher dimensions, Commun. Math. Phys., Volume 222 (2001) no. 3, pp. 495-501 | DOI | MR | Zbl
[6] SRB measures for singular hyperbolic attractors, Universidade Federal do Rio de Janeiro (Brazil) (2002) (Ph. D. Thesis)
[7] SRB measures as zero-noise limits, Ergodic Theory Dyn. Syst., Volume 25 (2005) no. 4, pp. 1115-1138 | DOI | MR | Zbl
[8] Introduction to partially hyperbolic dynamics (2015) (www.crm.umontreal.ca/sms/2017/pdf/diapos/00-CP-Trieste-Version1.pdf)
[9] Invariant manifolds, Lecture Notes in Mathematics, 583, Springer, 1977, ii+149 pages | MR
[10] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995, xviii+802 pages (With a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl
[11] Propriétés ergodiques des mesures de Sinaï, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 59, pp. 163-188 | DOI | MR | Zbl
[12] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math., Volume 122 (1985) no. 3, pp. 509-539 | DOI | MR | Zbl
[13] Deterministic non-periodic flow, J. Atmospheric Sci., Volume 20 (1963), pp. 130-141 | DOI
[14] The Hopf bifurcation and its applications, Applied Mathematical Sciences, 19, Springer-Verlag, New York, 1976, xiii+408 pages | MR | Zbl
[15] Sectional-hyperbolic systems, Ergodic Theory Dyn. Syst., Volume 28 (2008) no. 5, pp. 1587-1597 | DOI | MR | Zbl
[16] Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., Volume 160 (2004) no. 2, pp. 375-432 | DOI | MR | Zbl
[17] Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2004, vi+122 pages | DOI | MR | Zbl
[18] Existence and uniqueness of SRB measure on generic hyperbolic attractors, Commun. Math. Phys., Volume 302 (2011) no. 2, pp. 345-357 | DOI | MR | Zbl
[19] A measure associated with axiom-A attractors, Am. J. Math., Volume 98 (1976) no. 3, pp. 619-654 | DOI | MR | Zbl
[20] Gibbs measures in ergodic theory, Usp. Mat. Nauk, Volume 27 (1972) no. 4(166), pp. 21-64 | MR | Zbl
[21] Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dyn. Syst., Volume 20 (2000) no. 6, pp. 1851-1857 | DOI | MR | Zbl
[22] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | MR | Zbl
[23] http://video.impa.br/index.php?page=international-conference-on-dynamical-system)
(Online video,[24] Topological entropy of Lorenz-like flows (2014) (https://arxiv.org/abs/1412.1207)
[25] What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., Volume 108 (2002) no. 5-6, pp. 733-754 (Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays) | DOI | MR | Zbl
[26] Indices of singularities of robustly transitive sets, Discrete Contin. Dyn. Syst., Volume 21 (2008) no. 3, pp. 945-957 | DOI | MR | Zbl
Cité par Sources :