Nous construisons des réseaux non uniformes et convergents d’isométries d’une variété d’Hadamard à courbure strictement négative et pincée de dimension quelconque. Ces réseaux sont dits exotiques, au sens où ils possèdent des sous-groupes paraboliques maximaux d’exposant critique . Nous donnons aussi des examples explicites de réseaux exotiques non uniformes et divergents en dimension . Enfin, nous étudions une classe particulières de tels réseaux exotiques non uniformes et divergents dont la mesure de Bowen–Margulis est infinie et dont les « cusps » présentent un profile asymptotique particulier, satisfaisant une propriété de « queue lourde », et proposons une estimation précise du comportement asymptotique de leur fonction orbitale ; plus précisément, nous montrons que leur fonction orbitale croît de façon sous-exponentielle avec un comportement à l’infini de la forme , où est une fonction à variations lentes.
We construct non-uniform convergent lattices of pinched, negatively curved Hadamard spaces, in any dimension . These lattices are exotic, by which we mean that they have a maximal parabolic subgroup such that . We also give examples of divergent, non-uniform exotic lattices in dimension . Finally, we consider a particular class of such exotic lattices, with infinite Bowen–Margulis measure and whose cusps have a particular asymptotic profile (satisfying a “heavy tail condition”), and we give precise estimates of their orbital function; namely, we show that their orbital function is lower exponential with asymptotic behaviour , for a slowly varying function .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3089
Keywords: Poincaré exponent, convergent/divergent groups, Bowen–Margulis measure, orbital function
Mot clés : Exposant de Poincaré, groupe convergent/divergent, mesure de Bowen–Margulis, fonction orbitale
@article{AIF_2017__67_2_483_0, author = {Dal{\textquoteright}bo, Fran\c{c}oise and Peign\'e, Marc and Picaud, Jean-Claude and Sambusetti, Andrea}, title = {Convergence and {Counting} in {Infinite} {Measure}}, journal = {Annales de l'Institut Fourier}, pages = {483--520}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {2}, year = {2017}, doi = {10.5802/aif.3089}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3089/} }
TY - JOUR AU - Dal’bo, Françoise AU - Peigné, Marc AU - Picaud, Jean-Claude AU - Sambusetti, Andrea TI - Convergence and Counting in Infinite Measure JO - Annales de l'Institut Fourier PY - 2017 SP - 483 EP - 520 VL - 67 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3089/ DO - 10.5802/aif.3089 LA - en ID - AIF_2017__67_2_483_0 ER -
%0 Journal Article %A Dal’bo, Françoise %A Peigné, Marc %A Picaud, Jean-Claude %A Sambusetti, Andrea %T Convergence and Counting in Infinite Measure %J Annales de l'Institut Fourier %D 2017 %P 483-520 %V 67 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3089/ %R 10.5802/aif.3089 %G en %F AIF_2017__67_2_483_0
Dal’bo, Françoise; Peigné, Marc; Picaud, Jean-Claude; Sambusetti, Andrea. Convergence and Counting in Infinite Measure. Annales de l'Institut Fourier, Tome 67 (2017) no. 2, pp. 483-520. doi : 10.5802/aif.3089. http://www.numdam.org/articles/10.5802/aif.3089/
[1] Rigidité, groupe fondamental et dynamique, Panorama et synthése., 13, Société Mathématique de France, 2002, xiv+188 pages
[2] Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux, Ann. Scient. Ec. Norm. Sup., Volume 33 (2000) no. 1, pp. 81-120 | DOI
[3] Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps, Bull. Soc. Math. Fr., Volume 134 (2006) no. 1, pp. 119-163 | DOI
[4] Lectures on spaces of nonpositive curvature, DMV Seminar, 25, Birkhäuser Verlag, 1995, 112 pages
[5] Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser Verlag, 1985, iv+263 pages
[6] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | DOI
[7] Geometry of Manifolds, Pure and Applied Mathematics, 15, New York and London: Academic Press, 1964, ix+273 pages
[8] Rigidity for quasi-Möbius group actions, J. Differ. Geom., Volume 61 (2002) no. 1, pp. 81-106 | DOI
[9] Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math., Volume 41 (1995) no. 1-2, pp. 63-102
[10] Geometrical finiteness with variable negative curvature, Duke Math. J., Volume 77 (1995) no. 1, pp. 229-274 | DOI
[11] Séries de Poincaré des groupes géométriquement finis, Isr. J. Math., Volume 118 (2000), pp. 109-124 | DOI
[12] Groupes du Ping-Pong et géodésiques fermées en courbure , Ann. Inst. Fourier, Volume 46 (1996) no. 3, pp. 755-799 | DOI
[13] Volume growth and rigidity of negatively curved manifolds of finite volume (preprint)
[14] On the growth of nonuniform lattices in pinched negatively curved manifolds, J. Reine Angew. Math., Volume 627 (2009), pp. 31-52
[15] On the growth of quotients of Kleinian groups, Ergodic Theory Dyn. Syst., Volume 31 (2011) no. 3, pp. 835-851 | DOI
[16] On the horoboundary and the geometry of rays of negatively curved manifolds, Pac. J. Math., Volume 259 (2012) no. 1, pp. 55-100 | DOI
[17] One-sided local large deviation and renewal theorems in the case of infinite mean, Probab. Theory Relat. Fields, Volume 107 (1997) no. 4, pp. 451-465 | DOI
[18] Geometry of Nonpositively curved manifolds, Chicago Lectures in Mathematics., University of Chicago Press, 1996, 449 pages
[19] Strong renewal theorems with infinite mean, Trans. Am. Math. Soc., Volume 151 (1970), pp. 263-291 | DOI
[20] An Introduction to Probability Theory and Its Applications, Vol. II, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons Inc., 1971, xxiv+669 pages
[21] Correlation asymptotics from large deviations in dynamical systems with infinite measure, Colloq. Math., Volume 125 (2011) no. 2, pp. 193-212 | DOI
[22] Entropy-rigidity of locally symmetric spaces of negative curvature, Ann. Math., Volume 131 (1990) no. 1, pp. 35-51 | DOI
[23] Geometry of horospheres, J. Differ. Geom., Volume 12 (1977), pp. 481-491 | DOI
[24] Applications of ergodic theory to the investigation of manifolds of negative curvature, Funkts. Anal. Prilozh., Volume 3 (1969) no. 4, pp. 89-90
[25] On some exotic Schottky groups, Discrete Contin. Dyn. Syst., Volume 31 (2011) no. 2, pp. 559-579 | DOI
[26] Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. math., Volume 117 (1994) no. 2, pp. 275-302 | DOI
[27] Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier, Volume 52 (2002) no. 1, pp. 145-151 | DOI
[28] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér., Volume 95 (2003), 96 pages
[29] An extension of Kesten’s criterion for amenability to topological Markov chains, Adv. Math., Volume 235 (2013), pp. 450-468 | DOI
[30] Rate of mixing, closed geodesics and orbital counting for some negatively curved manifolds with infinite Bowen-Margulis measure (in preparation)
Cité par Sources :