À une algèbre de Hopf
Given a Hopf algebra
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3064
Keywords: quantum group, monoidal category, grading, pseudo-2-cocycle
Mot clés : groupe quantique, catégorie monoïdale, graduation, pseudo-2-cocycle
@article{AIF_2016__66_6_2299_0, author = {Bichon, Julien and Neshveyev, Sergey and Yamashita, Makoto}, title = {Graded twisting of categories and quantum groups by group actions}, journal = {Annales de l'Institut Fourier}, pages = {2299--2338}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3064}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3064/} }
TY - JOUR AU - Bichon, Julien AU - Neshveyev, Sergey AU - Yamashita, Makoto TI - Graded twisting of categories and quantum groups by group actions JO - Annales de l'Institut Fourier PY - 2016 SP - 2299 EP - 2338 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3064/ DO - 10.5802/aif.3064 LA - en ID - AIF_2016__66_6_2299_0 ER -
%0 Journal Article %A Bichon, Julien %A Neshveyev, Sergey %A Yamashita, Makoto %T Graded twisting of categories and quantum groups by group actions %J Annales de l'Institut Fourier %D 2016 %P 2299-2338 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3064/ %R 10.5802/aif.3064 %G en %F AIF_2016__66_6_2299_0
Bichon, Julien; Neshveyev, Sergey; Yamashita, Makoto. Graded twisting of categories and quantum groups by group actions. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2299-2338. doi : 10.5802/aif.3064. https://www.numdam.org/articles/10.5802/aif.3064/
[1] Quantum deformations of
[2] Théorie des représentations du groupe quantique compact libre
[3] Le groupe quantique compact libre
[4] Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI
[5] Half-liberated manifolds, and their quantum isometries (2015) (to appear in Glasg. Math. J., http://arxiv.org/abs/1505.00646)
[6] The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Volume 22 (2007) no. 4, pp. 345-384
[7] Classification results for easy quantum groups, Pacific J. Math., Volume 247 (2010) no. 1, pp. 1-26 | DOI
[8] Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009) no. 4, pp. 1461-1501 | DOI
[9] Quantum isometries of the finite noncommutative geometry of the standard model, Comm. Math. Phys., Volume 307 (2011) no. 1, pp. 101-131 | DOI
[10] Free wreath product by the quantum permutation group, Algebr. Represent. Theory, Volume 7 (2004) no. 4, pp. 343-362 | DOI
[11] Co-representation theory of universal co-sovereign Hopf algebras, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 83-98 | DOI
[12] Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., Volume 262 (2006) no. 3, pp. 703-728 | DOI
[13] Hopf algebras having a dense big cell, Trans. Amer. Math. Soc., Volume 368 (2016) no. 1, pp. 515-538 | DOI
[14] Quantum subgroups of the compact quantum group
[15] Grothendieck rings of universal quantum groups, J. Algebra, Volume 349 (2012), pp. 80-97 | DOI
[16] Braided bialgebras and quadratic bialgebras, Comm. Algebra, Volume 21 (1993) no. 5, pp. 1731-1749 | DOI
[17] Quasi-Hopf algebras, Algebra i Analiz, Volume 1 (1989) no. 6, pp. 114-148 Translation in Leningrad Math. J. 1 (1990), no. 6, 1419–1457
[18] The quantum group of a nondegenerate bilinear form, Phys. Lett. B, Volume 245 (1990) no. 2, pp. 175-177 | DOI
[19] Deformation of a Kac algebra by an abelian subgroup, Comm. Math. Phys., Volume 178 (1996) no. 3, pp. 571-596 http://projecteuclid.org/getRecord?id=euclid.cmp/1104286767 | DOI
[20] Module categories over representations of
[21] Quantum subgroups of
[22] Nilpotent fusion categories, Adv. Math., Volume 217 (2008) no. 3, pp. 1053-1071 | DOI
[23] Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math., Volume 9 (1998) no. 6, pp. 669-722 | DOI
[24] Reconstructing monoidal categories, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 111-136
[25] Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997, xx+552 pages
[26] On the center of a compact group, Int. Math. Res. Not. (2004) no. 51, pp. 2751-2756 | DOI
[27] Compact quantum groups and their representation categories, Cours Spécialisés [Specialized Courses], 20, Société Mathématique de France, Paris, 2013, vi+169 pages
[28] Poisson boundaries of monoidal categories (2014) (http://arxiv.org/abs/1405.6572)
[29] Classification of Non-Kac Compact Quantum Groups of
[30] Twisting the
[31] Symmetries of quantum spaces. Subgroups and quotient spaces of quantum
[32] Hopf bi-Galois extensions, Comm. Algebra, Volume 24 (1996) no. 12, pp. 3797-3825 | DOI
[33] A two-parameter quantization of
[34] Cocycle deformations of coordinate rings of quantum matrices, J. Algebra, Volume 189 (1997) no. 1, pp. 23-33 | DOI
[35] Invariants and semi-direct products for finite group actions on tensor categories, J. Math. Soc. Japan, Volume 53 (2001) no. 2, pp. 429-456 | DOI
[36] A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys., Volume 275 (2007) no. 1, pp. 271-296 | DOI
[37] Homotopy quantum field theory, EMS Tracts in Mathematics, 10, European Mathematical Society (EMS), Zürich, 2010, xiv+276 pages | DOI
[38] Universal quantum groups, Internat. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI
[39] Free products of compact quantum groups, Comm. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 http://projecteuclid.org/getRecord?id=euclid.cmp/1104272163 | DOI
[40] Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2), Volume 130 (1989) no. 2, pp. 273-319 | DOI
[41] Crossed products of
- Subproduct systems with quantum group symmetry. II, Transactions of the American Mathematical Society (2025) | DOI:10.1090/tran/9459
- Twisting Manin's universal quantum groups and comodule algebras, Advances in Mathematics, Volume 445 (2024), p. 55 (Id/No 109651) | DOI:10.1016/j.aim.2024.109651 | Zbl:1547.16026
- Bialgebra cohomology and exact sequences, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 362 (2024), pp. 1475-1483 | DOI:10.5802/crmath.659 | Zbl:7945489
- Quantum Automorphism Groups of Connected Locally Finite Graphs and Quantizations of Discrete Groups, International Mathematics Research Notices, Volume 2024 (2024) no. 3, p. 2219 | DOI:10.1093/imrn/rnad099
- A cogroupoid associated to preregular forms, Journal of Noncommutative Geometry, Volume 18 (2024) no. 4, pp. 1453-1483 | DOI:10.4171/jncg/558 | Zbl:7926814
- Twisting of graded quantum groups and solutions to the quantum Yang-Baxter equation, Transformation Groups, Volume 29 (2024) no. 4, pp. 1459-1500 | DOI:10.1007/s00031-022-09779-9 | Zbl:7960988
- Crossed Product Equivalence of Quantum Automorphism Groups of Finite Dimensional C*-Algebras, International Mathematics Research Notices, Volume 2023 (2023) no. 20, p. 17749 | DOI:10.1093/imrn/rnad060
- Cohomology of Graded Twisting of Hopf Algebras, Mathematics, Volume 11 (2023) no. 12, p. 2759 | DOI:10.3390/math11122759
- Some isomorphism results for graded twistings of function algebras on finite groups, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 31 (2022) no. 2, pp. 501-544 | DOI:10.5802/afst.1701 | Zbl:1497.16030
- Induced coactions along a homomorphism of locally compact quantum groups, Journal of Functional Analysis, Volume 282 (2022) no. 12, p. 53 (Id/No 109462) | DOI:10.1016/j.jfa.2022.109462 | Zbl:1496.46070
- Quantum coordinate ring in WZW model and affine vertex algebra extensions, Selecta Mathematica. New Series, Volume 28 (2022) no. 4, p. 49 (Id/No 68) | DOI:10.1007/s00029-022-00782-2 | Zbl:1507.17047
- Kac-Paljutkin quantum group as a quantum subgroup of the quantum
, Commentationes Mathematicae, Volume 59 (2019) no. 1-2, pp. 47-61 | DOI:10.14708/cm.v59i1-2.6466 | Zbl:1437.16025 - Higherℓ2-Betti Numbers of Universal Quantum Groups, Canadian Mathematical Bulletin, Volume 61 (2018) no. 2, p. 225 | DOI:10.4153/cmb-2017-036-3
-
-Betti numbers of rigid -tensor categories and discrete quantum groups, Analysis PDE, Volume 10 (2017) no. 7, pp. 1757-1791 | DOI:10.2140/apde.2017.10.1757 | Zbl:1378.46056 - Matrix models for noncommutative algebraic manifolds, Journal of the London Mathematical Society. Second Series, Volume 95 (2017) no. 2, pp. 519-540 | DOI:10.1112/jlms.12020 | Zbl:1383.46055
- Towards a classification of compact quantum groups of Lie type, Operator algebras and applications. The Abel symposium 2015 took place on the ship Finnmarken, part of the Coastal Express Line (the Norwegian Hurtigruten), from Bergen to the Lofoten Islands, Norway, August 7–11, 2015, Cham: Springer, 2016, pp. 225-257 | DOI:10.1007/978-3-319-39286-8_11 | Zbl:1434.22003
Cité par 16 documents. Sources : Crossref, zbMATH