Cet article étudie le groupe engendré par les automorphismes de l’espace projectif de dimension et par l’involution birationnelle standard de degré . Tout élément de ce groupe ne contracte que des hypersurfaces rationnelles, mais en dimension impaire il existe des éléments simples qui ont cette propriété et n’appartiennent pas au groupe. Des propriétés géométriques du groupe sont données, de même qu’une description de son intersection avec le groupe des transformations monômiales.
This article studies the group generated by automorphisms of the projective space of dimension and by the standard birational involution of degree . Every element of this group only contracts rational hypersurfaces, but in odd dimension, there are simple elements having this property which do not belong to the group. Geometric properties of the elements of the group are given, as well as a description of its intersection with monomial transformations.
Keywords: Cremona transformation, standard involution, rational hypersurfaces, monomial transformations
Mot clés : Transformations de Cremona, involution standard, hypersurfaces rationnelles, transformations monômiales
@article{AIF_2015__65_6_2641_0, author = {Blanc, J\'er\'emy and Hed\'en, Isac}, title = {The group of {Cremona} transformations generated by linear maps and the standard involution}, journal = {Annales de l'Institut Fourier}, pages = {2641--2680}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2999}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2999/} }
TY - JOUR AU - Blanc, Jérémy AU - Hedén, Isac TI - The group of Cremona transformations generated by linear maps and the standard involution JO - Annales de l'Institut Fourier PY - 2015 SP - 2641 EP - 2680 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2999/ DO - 10.5802/aif.2999 LA - en ID - AIF_2015__65_6_2641_0 ER -
%0 Journal Article %A Blanc, Jérémy %A Hedén, Isac %T The group of Cremona transformations generated by linear maps and the standard involution %J Annales de l'Institut Fourier %D 2015 %P 2641-2680 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2999/ %R 10.5802/aif.2999 %G en %F AIF_2015__65_6_2641_0
Blanc, Jérémy; Hedén, Isac. The group of Cremona transformations generated by linear maps and the standard involution. Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2641-2680. doi : 10.5802/aif.2999. http://www.numdam.org/articles/10.5802/aif.2999/
[1] Encyclopädie der mathematischen Wissenschaften. Band III, 2. Teil, 2 Häfte, Teubner, Leipzig (1921-1934)
[2] Geometry of the plane Cremona maps, Lecture Notes in Mathematics, 1769, Springer-Verlag, Berlin, 2002, pp. xvi+257 | DOI | MR | Zbl
[3] On the factorization of Cremona plane transformations, Trans. Amer. Math. Soc., Volume 17 (1916) no. 3, pp. 295-300 | DOI | MR
[4] Le transformazioni generatrici del gruppo Cremoniano nel piano., Torino Atti, Volume 36 (1901), pp. 861-874
[5] Point sets and allied Cremona groups. II, Trans. Amer. Math. Soc., Volume 17 (1916) no. 3, pp. 345-385 | DOI | MR
[6] Some properties of the group of birational maps generated by the automorphisms of and the standard involution (2014) (preprint, http://arxiv.org/abs/1403.0346v2) | MR
[7] Point sets in projective spaces and theta functions, Astérisque (1988) no. 165, pp. 210 pp. (1989) | Numdam | MR | Zbl
[8] Cremona special sets of points in products of projective spaces, Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 115-134 | DOI | MR | Zbl
[9] Application des idées cristallographiques à l’étude des groupes de transformations crémoniennes, 3 ième Coll. Géom. Algébrique (Bruxelles, 1959), Centre Belge Rech. Math., Louvain, 1960, pp. 65-73 | MR | Zbl
[10] Crystallography and Cremona transformations, The geometric vein, Springer, New York-Berlin, 1981, pp. 191-201 | MR | Zbl
[11] Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000, pp. xviii+329 | DOI | MR | Zbl
[12] On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996) (London Math. Soc. Lecture Note Ser.), Volume 264, Cambridge Univ. Press, Cambridge, 1999, pp. 111-150 | DOI | MR | Zbl
[13] On characteristic classes of determinantal Cremona transformations, Math. Ann., Volume 335 (2006) no. 2, pp. 479-487 | DOI | MR | Zbl
[14] Cremona transformations in plane and space, Cambridge, University Press, 1927, pp. XX + 454
[15] Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967, pp. xii+793 | MR | Zbl
[16] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Uspekhi Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 | DOI | MR | Zbl
[17] Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math., Volume 184 (1942), pp. 161-174 | EuDML | MR | Zbl
[18] Theorie der Transformationen Im , welche keine Fundamentalcurven 1. Art besitzen und ihrer endlichen gruppen, Acta Math., Volume 21 (1897) no. 1, pp. 1-78 | DOI | JFM | MR
[19] Sur la théorie des fonctions algébriques de deux variables., Journ. de Math. (4), Volume 8 (1892), pp. 385-419 | JFM | Numdam
[20] On polynomial rings in two variables, Nieuw Arch. Wiskunde (3), Volume 1 (1953), pp. 33-41 | MR | Zbl
[21] Feynman motives, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010, pp. xiv+220 | MR | Zbl
[22] Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, pp. xxiv+478 | DOI | MR | Zbl
[23] Polynomial automorphisms over finite fields: mimicking tame maps by the Derksen group, Serdica Math. J., Volume 37 (2011) no. 4, p. 305-322 (2012) | MR | Zbl
[24] A treatise of the theory of determinants with graduated sets of exercices, Macmillan, London, 1882 | JFM
[25] The theory of determinants in the historical order of development. Vol. III: The period 1861 to 1880, Macmillan, London, 1920
[26] Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 1, pp. 95-98 | DOI | MR | Zbl
[27] Die Determinanten. Eine Darstellung ihrer Theorie und Anwendungen mit Rücksicht auf die neueren Forschungen, Teubner, Leipzig, 1900 | JFM
[28] Algebraic surfaces, 75 (1967)
[29] Introduction to Algebraic Geometry, Oxford, at the Clarendon Press, 1949, pp. xvi+446 | MR | Zbl
[30] The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc., Volume 17 (2004) no. 1, p. 197-227 (electronic) | DOI | MR | Zbl
[31] On the Directrices of a Set of Points in a Plane, Proc. London Math. Soc., Volume S2-35 (1933) no. 1, pp. 23 | DOI | MR | Zbl
Cité par Sources :