Projected Richardson varieties and affine Schubert varieties
[Variétés de Richardson projetées et variétés de Schubert affines]
Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2385-2412.

Soit G un groupe algébrique complexe quasi-simple et G/P une variété de drapeaux partiels. La projection sur G/P des variétés de Richardson (de la variété des drapeaux complets) forment une stratification de G/P. Nous montrons que les relations d’adhérence des variétés de Richardson projetées correspondent à celles d’un certain sous-ensemble de variétés de Schubert sur la variété de drapeaux affine de G. Nous comparons aussi les classes de cohomologie équivariante et de K-théorie de ces deux stratifications. Notre travail généralise celui de Knutson, Lam et Speyer pour la grassmannienne de type A.

Let G be a complex quasi-simple algebraic group and G/P be a partial flag variety. The projections of Richardson varieties from the full flag variety form a stratification of G/P. We show that the closure partial order of projected Richardson varieties agrees with that of a subset of Schubert varieties in the affine flag variety of G. Furthermore, we compare the torus-equivariant cohomology and K-theory classes of these two stratifications by pushing or pulling these classes to the affine Grassmannian. Our work generalizes results of Knutson, Lam, and Speyer for the Grassmannian of type A.

DOI : 10.5802/aif.2990
Classification : 14M15, 05E10
Keywords: flag variety, Schubert calculus, projected Richardson variety, affine Schubert variety
Mot clés : Variété de drapeaux, calcul de Schubert, variété de Richardson projetée, variété de Schubert affine
He, Xuhua 1 ; Lam, Thomas 2

1 Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong (China)
2 Department of Mathematics University of Michigan Ann Arbor MI 48109 (USA)
@article{AIF_2015__65_6_2385_0,
     author = {He, Xuhua and Lam, Thomas},
     title = {Projected {Richardson} varieties and affine {Schubert} varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {2385--2412},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {6},
     year = {2015},
     doi = {10.5802/aif.2990},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2990/}
}
TY  - JOUR
AU  - He, Xuhua
AU  - Lam, Thomas
TI  - Projected Richardson varieties and affine Schubert varieties
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 2385
EP  - 2412
VL  - 65
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2990/
DO  - 10.5802/aif.2990
LA  - en
ID  - AIF_2015__65_6_2385_0
ER  - 
%0 Journal Article
%A He, Xuhua
%A Lam, Thomas
%T Projected Richardson varieties and affine Schubert varieties
%J Annales de l'Institut Fourier
%D 2015
%P 2385-2412
%V 65
%N 6
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2990/
%R 10.5802/aif.2990
%G en
%F AIF_2015__65_6_2385_0
He, Xuhua; Lam, Thomas. Projected Richardson varieties and affine Schubert varieties. Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2385-2412. doi : 10.5802/aif.2990. http://www.numdam.org/articles/10.5802/aif.2990/

[1] Billey, Sara; Coskun, Izzet Singularities of generalized Richardson varieties, Comm. Algebra, Volume 40 (2012) no. 4, pp. 1466-1495 | DOI | MR | Zbl

[2] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, pp. xiv+363 | MR | Zbl

[3] Björner, Anders; Wachs, Michelle Bruhat order of Coxeter groups and shellability, Adv. in Math., Volume 43 (1982) no. 1, pp. 87-100 | DOI | MR | Zbl

[4] Brion, Michel Positivity in the Grothendieck group of complex flag varieties, J. Algebra, Volume 258 (2002) no. 1, pp. 137-159 (Special issue in celebration of Claudio Procesi’s 60th birthday) | DOI | MR | Zbl

[5] Buch, Anders S.; Chaput, Pierre-Emmanuel; Mihalcea, Leonardo C.; Perrin, Nicolas Finiteness of cominuscule quantum K-theory, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 3, p. 477-494 (2013) | EuDML | MR | Zbl

[6] Buch, Anders Skovsted A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl

[7] Buch, Anders Skovsted; Kresch, Andrew; Tamvakis, Harry Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 901-915 (electronic) | DOI | MR | Zbl

[8] Chaput, P. E.; Manivel, L.; Perrin, N. Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, Volume 13 (2008) no. 1, pp. 47-89 | DOI | MR | Zbl

[9] Chriss, Neil; Ginzburg, Victor Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997, pp. x+495 | MR | Zbl

[10] Dyer, M. J. Hecke algebras and shellings of Bruhat intervals, Compositio Math., Volume 89 (1993) no. 1, pp. 91-115 | Numdam | MR | Zbl

[11] Fink, Alex; Speyer, David E. K-classes for matroids and equivariant localization, Duke Math. J., Volume 161 (2012) no. 14, pp. 2699-2723 | DOI | MR | Zbl

[12] Goodearl, K. R.; Yakimov, M. Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 5753-5780 | DOI | MR | Zbl

[13] Haines, Thomas J. The combinatorics of Bernstein functions, Trans. Amer. Math. Soc., Volume 353 (2001) no. 3, p. 1251-1278 (electronic) | DOI | MR | Zbl

[14] Harada, Megumi; Henriques, André; Holm, Tara S. Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. Math., Volume 197 (2005) no. 1, pp. 198-221 | MR | Zbl

[15] He, Xuhua Minimal length elements in some double cosets of Coxeter groups, Adv. Math., Volume 215 (2007) no. 2, pp. 469-503 | DOI | MR | Zbl

[16] He, Xuhua A subalgebra of 0-Hecke algebra, J. Algebra, Volume 322 (2009) no. 11, pp. 4030-4039 | DOI | MR | Zbl

[17] He, Xuhua Normality and Cohen-Macaulayness of local models of Shimura varieties, Duke Math. J., Volume 162 (2013) no. 13, pp. 2509-2523 | DOI | MR

[18] He, Xuhua; Lu, Jiang-Hua On intersections of certain partitions of a group compactification, Int. Math. Res. Not. IMRN (2011) no. 11, pp. 2534-2564 | DOI | MR | Zbl

[19] Iwahori, N.; Matsumoto, H. On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. (1965) no. 25, pp. 5-48 | Numdam | MR | Zbl

[20] Knutson, Allen; Lam, Thomas; Speyer, David E. Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | DOI | MR

[21] Knutson, Allen; Lam, Thomas; Speyer, David E. Projections of Richardson varieties, J. Reine Angew. Math., Volume 687 (2014), pp. 133-157 | DOI | MR

[22] Kostant, Bertram; Kumar, Shrawan The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. in Math., Volume 62 (1986) no. 3, pp. 187-237 | DOI | MR | Zbl

[23] Kostant, Bertram; Kumar, Shrawan T-equivariant K-theory of generalized flag varieties, J. Differential Geom., Volume 32 (1990) no. 2, pp. 549-603 http://projecteuclid.org/euclid.jdg/1214445320 | MR | Zbl

[24] Kottwitz, R.; Rapoport, M. Minuscule alcoves for GL n and G Sp 2n , Manuscripta Math., Volume 102 (2000) no. 4, pp. 403-428 | DOI | MR | Zbl

[25] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Inc., Boston, MA, 2002, pp. xvi+606 | DOI | MR | Zbl

[26] Lam, Thomas Affine Stanley symmetric functions, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1553-1586 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.6lam.pdf | MR | Zbl

[27] Lam, Thomas; Schilling, Anne; Shimozono, Mark K-theory Schubert calculus of the affine Grassmannian, Compos. Math., Volume 146 (2010) no. 4, pp. 811-852 | DOI | MR | Zbl

[28] Lam, Thomas; Shimozono, Mark From double quantum Schubert polynomials to k -double Schur functions via the Toda lattice (http://arxiv.org/abs/1109.2193)

[29] Lam, Thomas; Shimozono, Mark Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | DOI | MR | Zbl

[30] Lam, Thomas; Williams, Lauren Total positivity for cominuscule Grassmannians, New York J. Math., Volume 14 (2008), pp. 53-99 http://nyjm.albany.edu:8000/j/2008/14_53.html | MR | Zbl

[31] Lusztig, G. Total positivity in partial flag manifolds, Represent. Theory, Volume 2 (1998), pp. 70-78 | DOI | MR | Zbl

[32] Lusztig, George Parabolic character sheaves. I, Mosc. Math. J., Volume 4 (2004) no. 1, p. 153-179, 311 | MR | Zbl

[33] Mirković, I.; Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | DOI | MR | Zbl

[34] Pappas, G.; Rapoport, M. Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008) no. 1, pp. 118-198 (With an appendix by T. Haines and Rapoport) | DOI | MR | Zbl

[35] Postnikov, A. Total positivity, Grassmannians, and networks (http://www-math.mit.edu/~apost/papers/tpgrass.pdf)

[36] Richardson, R. W. Intersections of double cosets in algebraic groups, Indag. Math. (N.S.), Volume 3 (1992) no. 1, pp. 69-77 | DOI | MR | Zbl

[37] Rietsch, K. Closure relations for totally nonnegative cells in G/P, Math. Res. Lett., Volume 13 (2006) no. 5-6, pp. 775-786 | DOI | MR | Zbl

[38] Snider, Michelle Bernadette Affine patches on positroid varieties and affine pipe dreams, Cornell University (2010) (Ph. D. Thesis http://arxiv.org/abs/1011.3705) | MR

[39] Verma, Daya-Nand Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. (4), Volume 4 (1971), pp. 393-398 | Numdam | MR | Zbl

[40] Williams, Lauren K. Enumeration of totally positive Grassmann cells, Adv. Math., Volume 190 (2005) no. 2, pp. 319-342 | DOI | MR | Zbl

[41] Williams, Lauren K. Shelling totally nonnegative flag varieties, J. Reine Angew. Math., Volume 609 (2007), pp. 1-21 | DOI | MR | Zbl

[42] Zhu, Xinwen On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2), Volume 180 (2014) no. 1, pp. 1-85 | DOI | MR | Zbl

Cité par Sources :