Soit
Let
Keywords: twisted form, affinoid disc, ramification
Mot clés : form twisté, disque affinoïde, ramification
@article{AIF_2015__65_3_1301_0, author = {Schmidt, Tobias}, title = {Forms of an affinoid disc and ramification}, journal = {Annales de l'Institut Fourier}, pages = {1301--1347}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2957}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2957/} }
TY - JOUR AU - Schmidt, Tobias TI - Forms of an affinoid disc and ramification JO - Annales de l'Institut Fourier PY - 2015 SP - 1301 EP - 1347 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2957/ DO - 10.5802/aif.2957 LA - en ID - AIF_2015__65_3_1301_0 ER -
%0 Journal Article %A Schmidt, Tobias %T Forms of an affinoid disc and ramification %J Annales de l'Institut Fourier %D 2015 %P 1301-1347 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2957/ %R 10.5802/aif.2957 %G en %F AIF_2015__65_3_1301_0
Schmidt, Tobias. Forms of an affinoid disc and ramification. Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1301-1347. doi : 10.5802/aif.2957. http://www.numdam.org/articles/10.5802/aif.2957/
[1] Homological dimension in local rings, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 390-405 | DOI | MR | Zbl
[2] Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A., Volume 45 (1959), pp. 733-734 | DOI | MR | Zbl
[3] On
[4] Algebraic
[5] Spectral theory and analytic geometry over non-archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, Rhode Island, 1990 | MR | Zbl
[6] Non-Archimedean analysis, Springer-Verlag, Berlin, 1984 | MR | Zbl
[7] Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998 | MR | Zbl
[8] Descent for non-archimedean analytic spaces. (http://math.huji.ac.il/~temkin/papers/Descent.pdf)
[9] Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970, pp. xxvi+700 (Avec un appendice ıt Corps de classes local par Michiel Hazewinkel) | MR | Zbl
[10] Toute forme modérément ramifiée d’un polydisque ouvert est triviale, Math. Z., Volume 273 (2013) no. 1-2, pp. 331-353 | DOI | MR | Zbl
[11] Lectures in abstract algebra. III, Springer-Verlag, New York, 1975, pp. xi+323 (Theory of fields and Galois theory, Graduate Texts in Math., No. 32) | MR | Zbl
[12] Unipotent algebraic groups, Lecture Notes in Mathematics, Vol. 414, Springer-Verlag, Berlin, 1974, pp. v+165 | MR | Zbl
[13] Maximal fields with valuations, Duke Math. J., Volume 9 (1942), pp. 303-321 | DOI | MR | Zbl
[14] Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Math., Vol. 389, Springer-Verlag, Berlin, 1974, pp. iv+163 | MR | Zbl
[15] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, pp. xvi+914 | MR | Zbl
[16] Ordered groups, Proc. Indian Acad. Sci., Sect. A., Volume 16 (1942), pp. 256-263 | MR | Zbl
[17] Note on the
[18] Global dimension and Auslander regularity of Rees rings, Bull. Math. Soc. Belgique, Volume (serie A) XLIII (1991), pp. 59-87 | MR | Zbl
[19] Zariskian filtrations, K-Monographs in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996, pp. x+252 | Zbl
[20] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986, pp. xiv+320 | MR | Zbl
[21] Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987, pp. xvi+596 | MR | Zbl
[22] Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004, pp. xiv+304 | MR | Zbl
[23] Higher algebraic
[24] Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 3, pp. 461-554 | Numdam | MR | Zbl
[25] Forms of the affine line and its additive group, Pacific J. Math., Volume 32 (1970), pp. 527-539 | DOI | MR | Zbl
[26] Classes de diviseurs et dérivées logarithmiques, Topology, Volume 3 (1964) no. suppl. 1, pp. 81-96 | DOI | MR | Zbl
[27] Local fields, Graduate Texts in Math., 67, Springer-Verlag, New York, 1979, pp. viii+241 | MR | Zbl
[28] Galois cohomology, Springer Monographs in Math., Springer-Verlag, Berlin, 2002, pp. x+210 | MR | Zbl
[29] On local properties of non-Archimedean analytic spaces, Math. Ann., Volume 318 (2000) no. 3, pp. 585-607 | DOI | MR | Zbl
[30] On local properties of non-Archimedean analytic spaces. II, Israel J. Math., Volume 140 (2004), pp. 1-27 | DOI | MR | Zbl
[31] Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Springer-Verlag, New York, 1979, pp. xi+164 | MR | Zbl
[32] An introduction to algebraic K-theory (http://www.math.rutgers.edu/~weibel/Kbook.html) | MR
- Triangulations of non-Archimedean curves, semi-stable reduction, and ramification, Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 695-746 | DOI:10.5802/aif.3536 | Zbl:1523.14017
- Tamely ramified forms of closed polydisks and laces, Annales de l'Institut Fourier, Volume 71 (2021) no. 1, pp. 287-316 | DOI:10.5802/aif.3352 | Zbl:1485.14040
- A non-Archimedean Ohsawa-Takegoshi extension theorem, Mathematische Zeitschrift, Volume 291 (2019) no. 1-2, pp. 279-302 | DOI:10.1007/s00209-018-2083-4 | Zbl:1417.32026
- Galois descent of semi-affinoid spaces, Mathematische Zeitschrift, Volume 290 (2018) no. 3-4, pp. 1085-1114 | DOI:10.1007/s00209-018-2054-9 | Zbl:1428.14037
- Picard groups in
-adic Fourier theory, Manuscripta Mathematica, Volume 144 (2014) no. 1-2, pp. 1-23 | DOI:10.1007/s00229-013-0638-6 | Zbl:1295.22024 - Bruhat-Tits buildings and analytic geometry, arXiv (2011) | DOI:10.48550/arxiv.1110.1362 | arXiv:1110.1362
Cité par 6 documents. Sources : NASA ADS, zbMATH