Nous étudions les champs de modules des chaînes de marquées, reliés aux espaces de modules de Losev-Manin, et montrons que ces champs de modules coïncident avec certains champs toriques qui peuvent être décrits en termes de matrices de Cartan de systèmes de racines de type . Nous considérons également les variantes de ces champs liés aux systèmes de racines de type et .
We investigate moduli stacks of pointed chains of related to the Losev-Manin moduli spaces and show that these moduli stacks coincide with certain toric stacks which can be described in terms of the Cartan matrices of root systems of type . We also consider variants of these stacks related to root systems of type and .
Keywords: Losev-Manin moduli spaces, toric stacks, root systems, Cartan matrices, permutohedron.
Mot clés : Espaces de modules de Losev-Manin, champs toriques, systèmes de racines, matrices de Cartan, permutoèdre.
@article{AIF_2015__65_2_863_0, author = {Blume, Mark}, title = {Toric orbifolds associated to {Cartan} matrices}, journal = {Annales de l'Institut Fourier}, pages = {863--901}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {2}, year = {2015}, doi = {10.5802/aif.2946}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2946/} }
TY - JOUR AU - Blume, Mark TI - Toric orbifolds associated to Cartan matrices JO - Annales de l'Institut Fourier PY - 2015 SP - 863 EP - 901 VL - 65 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2946/ DO - 10.5802/aif.2946 LA - en ID - AIF_2015__65_2_863_0 ER -
Blume, Mark. Toric orbifolds associated to Cartan matrices. Annales de l'Institut Fourier, Tome 65 (2015) no. 2, pp. 863-901. doi : 10.5802/aif.2946. http://www.numdam.org/articles/10.5802/aif.2946/
[1] Tame stacks in positive characteristic, Ann. Inst. Fourier, Volume 58 (2008), pp. 1057-1091 (arXiv:math/0703310) | DOI | Numdam | MR | Zbl
[2] The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces, Tohoku Math. J., Volume 63 (2011), pp. 581-604 (arXiv:0911.3607) | DOI | MR | Zbl
[3] On generalisations of Losev-Manin moduli spaces for classical root systems, Pure and Applied Mathematics Quarterly, Volume 7 (2011, (Special Issue: In memory of Eckart Viehweg)), pp. 1053-1084 (arXiv:0912.2898) | DOI | MR
[4] The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc., Volume 18 (2005), pp. 193-213 (arXiv:math/0309229) | DOI | MR | Zbl
[5] The functor of a smooth toric variety, Tohoku Math. J., Volume 47 (1995), pp. 251-262 (arXiv:alg-geom/9312001) | DOI | MR | Zbl
[6] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Volume 4 (1995), pp. 17-50 (arXiv:alg-geom/9210008) | MR | Zbl
[7] Smooth toric Deligne-Mumford stacks, J. reine angew. Math., Volume 648 (2010), pp. 201-244 (arXiv:0708.1254) | MR | Zbl
[8] Cohomologie non abélienne, Grundlehren math. Wiss., 179, Springer-Verlag, Berlin - Heidelberg - New York, 1971 | MR | Zbl
[9] Éléments de Géométrie Algébrique, 4,8,11,17,20,24,28,32, Publ. Math. IHES, 1960-1967
[10] Séminaire de géométrie algébrique, Théorie des topos et cohomologie étale des schémas, Tome 3, Lecture Notes in Mathematics, 305, Springer-Verlag, Berlin - Heidelberg - New York, 1973
[11] Integral Chow rings of toric stacks (arXiv:0705.3524)
[12] Chow quotients of Grassmannians I, Adv. Soviet Math., Volume 16 (1993), pp. 29-110 (arXiv:alg-geom/9210002) | MR | Zbl
[13] The Picard scheme, Fundamental Algebraic Geometry (Math. Surveys Monogr.), Volume 123, Amer. Math. Soc., Providence, RI, 2005, p. 237-321, arXiv:math/0504020 | MR
[14] The projectivity of the moduli space of stable curves II: The stacks , Math. Scand., Volume 52 (1983), pp. 161-199 | MR | Zbl
[15] Champs algébriques, Springer-Verlag, Berlin - Heidelberg - New York, 2000 | MR | Zbl
[16] New Moduli Spaces of Pointed Curves and Pencils of Flat Connections, Michigan Math. J., Volume 48 (2000), pp. 443-472 (arXiv:math/0001003) | DOI | MR | Zbl
[17] A note on toric Deligne-Mumford stacks, Tohoku Math. J., Volume 60 (2008), pp. 441-458 (arXiv:0705.3823) | DOI | MR | Zbl
[18] Grothendieck topologies, fibered categories and descent theory, Fundamental Algebraic Geometry (Math. Surveys Monogr.), Volume 123, Amer. Math. Soc., Providence, RI, 2005, p. 1-104, arXiv:math/0412512 | MR
Cité par Sources :