Nous étudions les propriétés élémentaires d’applications multivaluées entre espaces métriques : mesurabilité, intégrabilité, continuité, caractère lipschitzien, extension lipschitzienne, et différentiabilité dans le cas d’espaces vectoriels. Nous rappelons le théorème de plongement de F.J. Almgren et nous démontrons un nouveau théorème de plongement, plus général, dont on déduit ensuite un théorème de compacité à la Fréchet-Kolmogoroff pour les espaces d’applications multivaluées. Nous introduisons une définition intrinsèque d’applications de Sobolev multivaluées à valeurs dans un espace de Hilbert et nous développons les outils classiques dans ce cadre : extension de Sobolev, inégalité de Poincaré, approximation de type Lusin par des applications lipschitziennes, théorie de trace, et l’analogue du théorème de compacité de Rellich. Nous obtenons en corollaire un résultat d’existence pour le problème de Dirichlet des applications multivaluées harmoniques de variables à valeurs dans un espace de Hilbert séparable.
We study the elementary properties of multiple valued maps between two metric spaces: their measurability, Lebesgue integrability, continuity, Lipschitz continuity, Lipschitz extension, and differentiability in case the range and domain are linear. We discuss F.J. Almgren’s embedding Theorem and we prove a new, more general, embedding from which a Fréchet-Kolmogorov compactness Theorem ensues for multiple valued spaces. In turn, we introduce an intrinsic definition of Sobolev multiple valued maps into Hilbert spaces, together with the relevant Sobolev extension property, Poincaré inequality, Luzin type approximation by Lipschitz maps, trace theory, and the analog of Rellich compactness. As a corollary we obtain an existence result for the Dirichlet problem of harmonic Hilbert space multiple valued maps of variables.
Keywords: Multiple valued maps, $p$ harmonic
Mot clés : Applications multivaluées, $p$ harmonique
@article{AIF_2015__65_2_763_0, author = {Bouafia, Philippe and De Pauw, Thierry and Goblet, Jordan}, title = {Existence of $p$ harmonic multiple valued maps into a separable {Hilbert} space}, journal = {Annales de l'Institut Fourier}, pages = {763--833}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {2}, year = {2015}, doi = {10.5802/aif.2944}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2944/} }
TY - JOUR AU - Bouafia, Philippe AU - De Pauw, Thierry AU - Goblet, Jordan TI - Existence of $p$ harmonic multiple valued maps into a separable Hilbert space JO - Annales de l'Institut Fourier PY - 2015 SP - 763 EP - 833 VL - 65 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2944/ DO - 10.5802/aif.2944 LA - en ID - AIF_2015__65_2_763_0 ER -
%0 Journal Article %A Bouafia, Philippe %A De Pauw, Thierry %A Goblet, Jordan %T Existence of $p$ harmonic multiple valued maps into a separable Hilbert space %J Annales de l'Institut Fourier %D 2015 %P 763-833 %V 65 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2944/ %R 10.5802/aif.2944 %G en %F AIF_2015__65_2_763_0
Bouafia, Philippe; De Pauw, Thierry; Goblet, Jordan. Existence of $p$ harmonic multiple valued maps into a separable Hilbert space. Annales de l'Institut Fourier, Tome 65 (2015) no. 2, pp. 763-833. doi : 10.5802/aif.2944. http://www.numdam.org/articles/10.5802/aif.2944/
[1] Deformations and multiple-valued functions, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) (Proc. Sympos. Pure Math.), Volume 44, Amer. Math. Soc., Providence, RI, 1986, pp. 29-130 | DOI | MR | Zbl
[2] Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000, pp. xvi+955 (-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2, With a preface by Jean E. Taylor and Vladimir Scheffer) | Zbl
[3] Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, RI, 2000, pp. xii+488 | MR | Zbl
[4] Hölder continuity of roots of complex and -adic polynomials, Comm. Algebra, Volume 38 (2010) no. 5, pp. 1658-1662 | DOI | MR | Zbl
[5] Direct methods in the calculus of variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989, pp. x+308 | DOI | MR | Zbl
[6] -valued functions revisited, Mem. Amer. Math. Soc., Volume 211 (2011) no. 991, pp. vi+79 | DOI | MR | Zbl
[7] Vector measures, American Mathematical Society, Providence, R.I., 1977, pp. xiii+322 (With a foreword by B. J. Pettis, Mathematical Surveys, No. 15) | MR | Zbl
[8] Functional analysis, Dover Publications, Inc., New York, 1995, pp. xvi+783 (Theory and applications, Corrected reprint of the 1965 original) | MR | Zbl
[9] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969, pp. xiv+676 | MR | Zbl
[10] A selection theory for multiple-valued functions in the sense of Almgren, Ann. Acad. Sci. Fenn. Math., Volume 31 (2006) no. 2, pp. 297-314 | MR | Zbl
[11] Lipschitz extension of multiple Banach-valued functions in the sense of Almgren, Houston J. Math., Volume 35 (2009) no. 1, pp. 223-231 | MR | Zbl
[12] Extensions of Lipschitz maps into Banach spaces, Israel J. Math., Volume 54 (1986) no. 2, pp. 129-138 | DOI | MR | Zbl
[13] Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. (2005) no. 58, pp. 3625-3655 | DOI | MR | Zbl
[14] Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51, American Mathematical Society, Providence, RI, 1997, pp. xiv+291 | DOI | MR | Zbl
[15] Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966, pp. xiii+243 | MR | Zbl
[16]
(Personal communication)[17] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934) no. 1, pp. 63-89 | DOI | MR | Zbl
[18] Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972, pp. xii+399 | MR | Zbl
Cité par Sources :