Nous montrons que la conjecture de Yau sur les inégalités concernant le -ième nombre de Griffiths et le -ième nombre de Hironaka n’est pas vraie en général pour les singularités de Gorenstein isolées rigides de dimension supérieure à 2. Cependant, la première conjecture sur les inégalités concernant le -ième nombre de Griffiths est vraie pour les singularités irrégulières.
We show that Yau’s conjecture on the inequalities for -th Griffiths number and -th Hironaka number does not hold for isolated rigid Gorenstein singularities of dimension greater than 2. But his conjecture on the inequality for -th Griffiths number is true for irregular singularities.
Keywords: Griffiths number, Hironaka number, rigid Gorenstein singularity, irregular singularity
Mot clés : nombre de Griffiths, nombre de Hironaka, singularités de Gorenstein rigides, singularités irrégulières
@article{AIF_2015__65_1_389_0, author = {Du, Rong and Gao, Yun}, title = {On the {Griffiths} numbers for higher dimensional singularities}, journal = {Annales de l'Institut Fourier}, pages = {389--395}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2935}, zbl = {06496544}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2935/} }
TY - JOUR AU - Du, Rong AU - Gao, Yun TI - On the Griffiths numbers for higher dimensional singularities JO - Annales de l'Institut Fourier PY - 2015 SP - 389 EP - 395 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2935/ DO - 10.5802/aif.2935 LA - en ID - AIF_2015__65_1_389_0 ER -
%0 Journal Article %A Du, Rong %A Gao, Yun %T On the Griffiths numbers for higher dimensional singularities %J Annales de l'Institut Fourier %D 2015 %P 389-395 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2935/ %R 10.5802/aif.2935 %G en %F AIF_2015__65_1_389_0
Du, Rong; Gao, Yun. On the Griffiths numbers for higher dimensional singularities. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 389-395. doi : 10.5802/aif.2935. http://www.numdam.org/articles/10.5802/aif.2935/
[1] Four-dimensional terminal Gorenstein quotient singularities, Mat. Zametki, Volume 73 (2003) no. 6, pp. 813-820 | DOI | MR | Zbl
[2] Variations on a theorem of Abel, Invent. Math., Volume 35 (1976), pp. 321-390 | DOI | MR | Zbl
[3] Theory and applications of finite groups, Dover Publications, Inc., New York, 1961, pp. xvii+390 | MR | Zbl
[4] Rigidity of quotient singularities, Invent. Math., Volume 14 (1971), pp. 17-26 | DOI | MR | Zbl
[5] Analytic sheaves of local cohomology, Trans. Amer. Math. Soc., Volume 148 (1970), pp. 347-366 | DOI | MR | Zbl
[6] Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg, Volume 55 (1985), pp. 97-110 | DOI | MR | Zbl
[7] Existence of -integrable holomorphic forms and lower estimates of , Duke Math. J., Volume 48 (1981) no. 3, pp. 537-547 http://projecteuclid.org/euclid.dmj/1077314780 | DOI | MR | Zbl
[8] Various numerical invariants for isolated singularities, Amer. J. Math., Volume 104 (1982) no. 5, pp. 1063-1100 | DOI | MR | Zbl
[9] Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., Volume 105 (1993) no. 505, pp. viii+88 | DOI | MR | Zbl
Cité par Sources :