Soit un submersion propre entre variétés complexes, et soit un fibré holomorphe sur . Nous étudions et décrivons explicitement le sous-faisceau de torsion de la première image directe en supposant que . Nous discutons deux applications des résultats obtenus : la première concerne le lieu des points où une famille génériquement verselle de surfaces complexes est non-verselle. La deuxième application est un résultat d’annulation pour dans une situation concrète liée à notre programme pour démontrer l’existence des courbes sur les surfaces de la classe VII.
Let be a proper holomorphic submersion between complex manifolds and a holomorphic bundle on . We study and describe explicitly the torsion subsheaf of the first direct image under the assumption . We give two applications of our results. The first concerns the locus of points in the base of a generically versal family of complex surfaces where the family is non-versal. The second application is a vanishing result for in a concrete situation related to our program to prove existence of curves on class VII surfaces.
Keywords: coherent sheaves, higher direct images, complex surfaces, versal deformation, torsion subsheaf
Mot clés : Faisceaux cohérents, images directes supérieures, surfaces complexes, déformation verselle, sous-faisceau de torsion
@article{AIF_2015__65_1_101_0, author = {Teleman, Andrei}, title = {On the torsion of the first direct image of a locally free sheaf}, journal = {Annales de l'Institut Fourier}, pages = {101--136}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2926}, zbl = {06496535}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2926/} }
TY - JOUR AU - Teleman, Andrei TI - On the torsion of the first direct image of a locally free sheaf JO - Annales de l'Institut Fourier PY - 2015 SP - 101 EP - 136 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2926/ DO - 10.5802/aif.2926 LA - en ID - AIF_2015__65_1_101_0 ER -
%0 Journal Article %A Teleman, Andrei %T On the torsion of the first direct image of a locally free sheaf %J Annales de l'Institut Fourier %D 2015 %P 101-136 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2926/ %R 10.5802/aif.2926 %G en %F AIF_2015__65_1_101_0
Teleman, Andrei. On the torsion of the first direct image of a locally free sheaf. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 101-136. doi : 10.5802/aif.2926. http://www.numdam.org/articles/10.5802/aif.2926/
[1] Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucharest; John Wiley & Sons, London-New York-Sydney, 1976, pp. 296 (Translated from the Romanian) | MR | Zbl
[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Springer-Verlag, Berlin, 2004, pp. xii+436 | MR | Zbl
[3] Offenheit der Versalität in der analytischen Geometrie, Math. Z., Volume 173 (1980) no. 3, pp. 241-281 | DOI | MR | Zbl
[4] Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, Springer-Verlag, Berlin, 2007, pp. viii+216 (Reprint of the 1980 original) | Zbl
[5] Complex Analytic and Differential Geometry (www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[6] Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.) (1984) no. 14, pp. ii+120 | Numdam | MR | Zbl
[7] From non-Kählerian surfaces to Cremona group of , Complex Manifolds, Volume 1 (2014) no. Issue 1, pp. 1-33 | MR
[8] Class surfaces with curves, Tohoku Math. J. (2), Volume 55 (2003) no. 2, pp. 283-309 | DOI | MR | Zbl
[9] Le problème des modules locaux pour les espaces -analytiques compacts, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), pp. 569-602 | Numdam | MR | Zbl
[10] Sém. Géom. Anal. (1974) (École Norm. Sup., 1971–1972, Astérisque 16, Soc. Math. France, Paris) | Numdam | MR | Zbl
[11] An algebraic formula for the degree of a map germ, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 19-44 | DOI | MR | Zbl
[12] Surfaces of class with curves, Tôhoku Math. J. (2), Volume 33 (1981) no. 4, pp. 453-492 | DOI | MR | Zbl
[13] Stacks for everybody, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, Basel, 2001, pp. 349-359 | MR | Zbl
[14] Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976, pp. vii+201 | MR | Zbl
[15] Ein Kriterium für die Offenheit der Versalität, Math. Z., Volume 178 (1981) no. 4, pp. 449-473 | DOI | MR | Zbl
[16] Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973, pp. viii+283 | MR | Zbl
[17] Coherent analytic sheaves, 265, Springer-Verlag, Berlin, 1984, pp. xviii+249 | MR | Zbl
[18] The moduli stack of vector bundles on a curve, Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 387-394 | MR | Zbl
[19] Holomorphic functions of several variables, de Gruyter Studies in Mathematics, 3, Walter de Gruyter & Co., Berlin, 1983, pp. xv+349 | MR | Zbl
[20] Differential geometry of complex vector bundles, 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, pp. xii+305 | MR | Zbl
[21] A theorem of completeness for complex analytic fibre spaces, Acta Math., Volume 100 (1958), pp. 281-294 | DOI | MR | Zbl
[22] The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ, 1995, pp. x+254 | MR | Zbl
[23] The Teichmüller and Riemann spaces as analytic stacks and groupoids (2013) (preprint arXiv:1311.4170)
[24] On surfaces of class with curves, Invent. Math., Volume 78 (1984) no. 3, pp. 393-443 | DOI | MR | Zbl
[25] Towards classification of non-Kählerian surfaces, Sugaku Expositions, Volume 2 (1989) no. 2, pp. 209-229 | Zbl
[26] On surfaces of class with curves, II, Tôhuku Mathematical Journal, Volume 42 (1990) no. 4, pp. 475-516 | DOI | MR | Zbl
[27] Logarithmic moduli spaces for surfaces of class VII, Math. Ann., Volume 341 (2008) no. 2, pp. 323-345 | DOI | MR | Zbl
[28] Local theory of complex spaces, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 7-96 | MR | Zbl
[29] A variation formula for the determinant line bundle. Compact subspaces of moduli spaces of stable bundles over class VII surfaces (arXiv:1309.0350 [math.CV])
[30] Donaldson theory on non-Kählerian surfaces and class VII surfaces with , Invent. Math., Volume 162 (2005) no. 3, pp. 493-521 | DOI | MR | Zbl
[31] The pseudo-effective cone of a non-Kählerian surface and applications, Math. Ann., Volume 335 (2006) no. 4, pp. 965-989 | DOI | MR | Zbl
[32] Gauge theoretical methods in the classification of non-Kählerian surfaces, Algebraic topology—old and new (the Postnikov Memorial Volume) (Banach Center Publ.), Volume 85, Polish Acad. Sci. Inst. Math., Warsaw, 2009, pp. 109-120 | MR | Zbl
[33] Instantons and holomorphic curves on class VII surfaces, Ann. of Math. (2), Volume 172 (2010) no. 3, pp. 1749-1804 | DOI | MR | Zbl
[34] Projectively flat surfaces and Bogomolov’s theorem on class surfaces, Internat. J. Math., Volume 5 (1994) no. 2, pp. 253-264 | DOI | MR | Zbl
Cité par Sources :