Dans cet article, nous montrons que pour une variété projective lisse, , de dimension au plus et de dimension de Kodaira non négative, la dimension de Kodaira des sous-faisceaux cohérents de est majorée par la dimension de Kodaira de . Cela implique la finitude du groupe fondamental de lorsque la dimension de Kodaira de est nulle et sa caractéristique holomorphe d’Euler est non nulle.
In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an provided that has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.
Keywords: Kodaira dimension, varieties of Kodaira dimension zero, minimal model theory
Mot clés : dimension de Kodaira, variétés avec la dimension de Kodaira nulle, théorie du modéle minimal
@article{AIF_2014__64_1_203_0, author = {Taji, Behrouz}, title = {Birational positivity in dimension $4$}, journal = {Annales de l'Institut Fourier}, pages = {203--216}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2845}, mrnumber = {3330547}, zbl = {1326.14093}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2845/} }
TY - JOUR AU - Taji, Behrouz TI - Birational positivity in dimension $4$ JO - Annales de l'Institut Fourier PY - 2014 SP - 203 EP - 216 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2845/ DO - 10.5802/aif.2845 LA - en ID - AIF_2014__64_1_203_0 ER -
Taji, Behrouz. Birational positivity in dimension $4$. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 203-216. doi : 10.5802/aif.2845. http://www.numdam.org/articles/10.5802/aif.2845/
[1] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl
[2] Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4), Volume 25 (1992) no. 5, pp. 539-545 | Numdam | MR | Zbl
[3] Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom., Volume 4 (1995) no. 3, pp. 487-502 | MR | Zbl
[4] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl
[5] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | DOI | MR | Zbl
[6] Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France, Volume 139 (2011) no. 1, pp. 41-74 (With an appendix by Matei Toma) | Numdam | MR | Zbl
[7] Subsheaves of the cotangent bundle, Cent. Eur. J. Math., Volume 4 (2006) no. 2, p. 209-224 (electronic) | DOI | MR | Zbl
[8] Families of rationally connected varieties, J. Amer. Math. Soc., Volume 16 (2003) no. 1, p. 57-67 (electronic) | DOI | MR | Zbl
[9] Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Société Mathématique de France, 1992 | MR
[10] Rationally connected varieties, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 429-448 | MR | Zbl
[11] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, pp. viii+254 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | Zbl
[12] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 449-476 | MR | Zbl
[13] Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proc. Sympos. Pure Math.), Volume 46, Amer. Math. Soc., Providence, RI, 1987, pp. 245-268 | MR | Zbl
[14] Flat modules in algebraic geometry, Compositio Math., Volume 24 (1972), pp. 11-31 | Numdam | MR | Zbl
[15] Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., Volume 74 (1977) no. 5, pp. 1798-1799 | DOI | MR | Zbl
Cité par Sources :