Un point à coordonnées dans un sous-corps de de degré de transcendance un sur , avec linéairement indépendants sur , peut admettre un exposant d’approximation uniforme par les éléments de qui soit strictement plus grand que la borne inférieure que garantit le principe des tiroirs de Dirichlet. Ce fait inattendu est apparu, en lien avec des travaux de Davenport et Schmidt, pour les points de la parabole . Le but de cet article est de montrer que ce phénomène s’étend à toutes les coniques réelles définies sur et que le plus grand exposant d’approximation atteint par les points de ces courbes, sujets à la condition d’indépendance linéaire mentionnée plus tôt, est toujours le même, indépendamment de la courbe, à savoir où désigne le nombre d’or.
A point with coordinates in a subfield of of transcendence degree one over , with linearly independent over , may have a uniform exponent of approximation by elements of that is strictly larger than the lower bound given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola . The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest exponent of approximation achieved by points of these curves satisfying the above condition of linear independence is always the same, independently of the curve, namely where denotes the golden ratio.
Keywords: algebraic curves, conics, real points, approximation by rational points, exponent of approximation, simultaneous approximation
Mot clés : courbes algébriques, coniques, points réels, approximation par des points rationnels, exposant d’approximation, approximation simultanée
@article{AIF_2013__63_6_2331_0, author = {Roy, Damien}, title = {Rational approximation to real points on conics}, journal = {Annales de l'Institut Fourier}, pages = {2331--2348}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2832}, zbl = {06325436}, mrnumber = {3237450}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2832/} }
TY - JOUR AU - Roy, Damien TI - Rational approximation to real points on conics JO - Annales de l'Institut Fourier PY - 2013 SP - 2331 EP - 2348 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2832/ DO - 10.5802/aif.2832 LA - en ID - AIF_2013__63_6_2331_0 ER -
%0 Journal Article %A Roy, Damien %T Rational approximation to real points on conics %J Annales de l'Institut Fourier %D 2013 %P 2331-2348 %V 63 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2832/ %R 10.5802/aif.2832 %G en %F AIF_2013__63_6_2331_0
Roy, Damien. Rational approximation to real points on conics. Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2331-2348. doi : 10.5802/aif.2832. http://www.numdam.org/articles/10.5802/aif.2832/
[1] Approximation simultanée d’un nombre -adique et de son carré par des nombres algébriques, J. Number Theory (to appear)
[2] Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 3, pp. 773-804 | DOI | Numdam | MR | Zbl
[3] Approximation to real numbers by algebraic integers, Acta Arith., Volume 15 (1968/1969), pp. 393-416 | MR | Zbl
[4] Extremal subspaces and their submanifolds, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 437-466 | DOI | MR | Zbl
[5] Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.), Volume 14 (2003) no. 1, pp. 45-53 | DOI | MR | Zbl
[6] Simultaneous approximation to a real number and to its cube, Acta Arith. (to appear)
[7] Approximation simultanée d’un nombre et de son carré, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 1, pp. 1-6 | DOI | MR | Zbl
[8] Approximation to real numbers by cubic algebraic integers. II, Ann. of Math. (2), Volume 158 (2003) no. 3, pp. 1081-1087 | DOI | MR | Zbl
[9] Approximation to real numbers by cubic algebraic integers. I, Proc. London Math. Soc. (3), Volume 88 (2004) no. 1, pp. 42-62 | DOI | MR | Zbl
[10] On two exponents of approximation related to a real number and its square, Canad. J. Math., Volume 59 (2007) no. 1, pp. 211-224 | DOI | MR | Zbl
[11] On simultaneous rational approximations to a real number, its square, and its cube, Acta Arith., Volume 133 (2008) no. 2, pp. 185-197 | DOI | MR | Zbl
[12] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, Berlin, 1980, pp. x+299 | MR | Zbl
[13] Simultaneous approximation to real and p-adic numbers, ProQuest LLC, Ann Arbor, MI, 2009, pp. 147 Thesis (Ph.D.)–University of Ottawa (Canada) | MR
Cité par Sources :