On étudie la dimension moyenne de l’espace de courbes
We study the mean dimension of the space of 1-Brody curves lying in two complex surfaces : first for Hopf surfaces, then for the projective plane minus a line. We show in the first case that the mean dimension is zero via a bound on the growth of meromorphic curves involving the logarithmic derivative lemma. In the second case, we show its positivity by lifting from the line to its complement a space of Brody curves of positive mean dimension containing deformations of an elliptic curve.
Mot clés : dimension moyenne, courbes de Brody, surfaces de Hopf, complémentaires d’hyperplans
Keywords: Mean dimension, Brody curves, Hopf surfaces, hyperplane complements
@article{AIF_2013__63_6_2223_0, author = {Freitas Paulo da Costa, Bernardo}, title = {Deux exemples sur la dimension moyenne d{\textquoteright}un espace de courbes de {Brody}}, journal = {Annales de l'Institut Fourier}, pages = {2223--2237}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2827}, zbl = {1295.30083}, mrnumber = {3237445}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.2827/} }
TY - JOUR AU - Freitas Paulo da Costa, Bernardo TI - Deux exemples sur la dimension moyenne d’un espace de courbes de Brody JO - Annales de l'Institut Fourier PY - 2013 SP - 2223 EP - 2237 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2827/ DO - 10.5802/aif.2827 LA - fr ID - AIF_2013__63_6_2223_0 ER -
%0 Journal Article %A Freitas Paulo da Costa, Bernardo %T Deux exemples sur la dimension moyenne d’un espace de courbes de Brody %J Annales de l'Institut Fourier %D 2013 %P 2223-2237 %V 63 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2827/ %R 10.5802/aif.2827 %G fr %F AIF_2013__63_6_2223_0
Freitas Paulo da Costa, Bernardo. Deux exemples sur la dimension moyenne d’un espace de courbes de Brody. Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2223-2237. doi : 10.5802/aif.2827. https://www.numdam.org/articles/10.5802/aif.2827/
[1] Sur l’hyperbolicité de certains complémentaires, Enseign. Math. (2), Volume 47 (2001) no. 3-4, pp. 253-267 | MR | Zbl
[2] Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., Volume 235 (1978), pp. 213-219 | MR | Zbl
[3] The spherical derivative of integral and meromorphic functions, Comment. Math. Helv., Volume 40 (1966), pp. 117-148 | DOI | MR | Zbl
[4] Brody curves omitting hyperplanes, Ann. Acad. Sci. Fenn. Math., Volume 35 (2010) no. 2, pp. 565-570 | DOI | MR | Zbl
[5] Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., Volume 169 (1972), pp. 89-103 | DOI | MR | Zbl
[6] Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978, pp. xii+813 (Pure and Applied Mathematics) | MR | Zbl
[7] Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., Volume 2 (1999) no. 4, pp. 323-415 | DOI | MR | Zbl
[8] Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964, pp. xiv+191 | MR | Zbl
[9] On the structure of compact complex analytic surfaces. II, Amer. J. Math., Volume 88 (1966), pp. 682-721 | DOI | MR | Zbl
[10] Sur les formes réduites des transformations ponctuelles à deux variables, CR Acad. Sci. Paris, Volume 152 (1911), pp. 1566-1569
[11] Moduli space of Brody curves, energy and mean dimension, Nagoya Math. J., Volume 192 (2008), pp. 27-58 | MR | Zbl
[12] Deformation of Brody curves and mean dimension, Ergodic Theory Dynam. Systems, Volume 29 (2009) no. 5, pp. 1641-1657 | DOI | MR | Zbl
Cité par Sources :