On donne quelques structures n’ayant pas l’élimination des quantificateurs, mais dans lesquelles l’adhérence, et donc l’intérieur et le bord, d’un ensemble défini sans quantificateur est encore un ensemble défini sans quantificateur.
We give some structures without quantifier elimination but in which the closure, and hence the interior and the boundary, of a quantifier free definable set is also a quantifier free definable set.
Keywords: Quantifiers elimination - semi-analytic sets - semi-algebraic sets.
Mot clés : Ensembles semianalytiques - Ensembles semialgébriques - Elimination des quantificateurs.
@article{AIF_2013__63_5_1771_0, author = {Elkhadiri, Abdelhafed}, title = {On some global semianalytic sets}, journal = {Annales de l'Institut Fourier}, pages = {1771--1791}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {5}, year = {2013}, doi = {10.5802/aif.2814}, zbl = {06284532}, mrnumber = {3186508}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2814/} }
TY - JOUR AU - Elkhadiri, Abdelhafed TI - On some global semianalytic sets JO - Annales de l'Institut Fourier PY - 2013 SP - 1771 EP - 1791 VL - 63 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2814/ DO - 10.5802/aif.2814 LA - en ID - AIF_2013__63_5_1771_0 ER -
Elkhadiri, Abdelhafed. On some global semianalytic sets. Annales de l'Institut Fourier, Tome 63 (2013) no. 5, pp. 1771-1791. doi : 10.5802/aif.2814. http://www.numdam.org/articles/10.5802/aif.2814/
[1] On the real exponential field with restricted analytic functions, Israel J. Math., Volume 85 (1994), pp. 19-56 | DOI | MR | Zbl
[2] Familles noethériennes de modules sur et applications, Bull. Sci. math., Volume 120 (1996), pp. 253-292 | MR | Zbl
[3] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996) no. 1, pp. 1-12 | DOI | MR | Zbl
[4] Ensembles semi-analytiques, IHES, Bures-sur-Yvette, France, 1965
[5] Idéaux de fonctions différentiables, Springer Verlag, Ergebnisse der Mathematik, 1971 | MR | Zbl
[6] Tame topology and o-minimal structures, 248, Cambridge University Press | MR | Zbl
[7] Remarks on Tarski’s problem concerning , G. Lolli et al. (eds.), logic Colloquium ’82, North-Holland, Amesterdam, 1984, pp. 97-121 | Zbl
[8] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2 | DOI | MR | Zbl
[9] Model completenes results for expansions of the ordered field of real numbers by restricted pfaffian functions and the exponential function, Journal of the American Mathematical Society, Volume 9 (October 1996) no. 4 | MR | Zbl
Cité par Sources :