Soient et deux nombres premiers distincts et le quotient de la courbe de Shimura de discriminant par l’involution d’Atkin-Lehner . Nous décrivons un moyen permettant de vérifier un critère de Parent et Yafaev en grande généralité pour prouver que si et satisfont des conditions de congruence explicites, connues comme les conditions du cas non ramifié de Ogg, et si est assez grand par rapport à , alors le quotient n’a pas de point rationnel non spécial.
Let and be two distinct prime numbers, and be the quotient of the Shimura curve of discriminant by the Atkin-Lehner involution . We describe a way to verify in wide generality a criterion of Parent and Yafaev to prove that if and satisfy some explicite congruence conditions, known as the conditions of the non ramified case of Ogg, and if is large enough compared to , then the quotient has no rational point, except possibly special points.
Mot clés : courbes de Shimura, points rationnels, vecteurs de Gross, involutions d’Atkin-Lehner
Keywords: Shimura curves, rational points, Gross vectors, Atkin-Lehner involutions
@article{AIF_2013__63_4_1613_0, author = {Gillibert, Florence}, title = {Points rationnels sur les quotients {d{\textquoteright}Atkin-Lehner} de courbes de {Shimura} de discriminant $pq$}, journal = {Annales de l'Institut Fourier}, pages = {1613--1649}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {4}, year = {2013}, doi = {10.5802/aif.2810}, zbl = {06359596}, mrnumber = {3137362}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2810/} }
TY - JOUR AU - Gillibert, Florence TI - Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant $pq$ JO - Annales de l'Institut Fourier PY - 2013 SP - 1613 EP - 1649 VL - 63 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2810/ DO - 10.5802/aif.2810 LA - fr ID - AIF_2013__63_4_1613_0 ER -
%0 Journal Article %A Gillibert, Florence %T Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant $pq$ %J Annales de l'Institut Fourier %D 2013 %P 1613-1649 %V 63 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2810/ %R 10.5802/aif.2810 %G fr %F AIF_2013__63_4_1613_0
Gillibert, Florence. Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant $pq$. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1613-1649. doi : 10.5802/aif.2810. http://www.numdam.org/articles/10.5802/aif.2810/
[1] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21, Springer-Verlag, Berlin, 1990 | MR | Zbl
[2] On finiteness conjectures for endomorphism algebras of abelian surfaces, Math. Proc. Cambridge Philos. Soc., Volume 141 (2006) no. 3, pp. 383-408 | DOI | MR | Zbl
[3] Local and global points on moduli spaces of potentially quaternionic abelian surfaces, Harvard University (2003) (Ph. D. Thesis Available at http://math.uga.edu/∼pete/thesis.pdf)
[4] Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 143-316. Lecture Notes in Math., Vol. 349 | MR | Zbl
[5] On Néron models, divisors and modular curves, J. Ramanujan Math. Soc., Volume 13 (1998) no. 2, pp. 157-194 | MR | Zbl
[6] Heights and the special values of -series, Number theory (Montreal, Que., 1985) (CMS Conf. Proc.), Volume 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115-187 | MR | Zbl
[7] Groupes de monodromie en géométrie algébrique (SGA7-I), 288, Lecture Notes in Math., Springer, 1972 | MR
[8] On the Néron model of Jacobians of Shimura curves, Compositio Math., Volume 60 (1986) no. 2, pp. 227-236 | Numdam | MR | Zbl
[9] On the non-existence of exceptional automorphisms on Shimura curves, Bull. Lond. Math. Soc., Volume 40 (2008) no. 3, pp. 363-374 | DOI | MR | Zbl
[10] Determination of modular forms by twists of critical -values, Invent. Math., Volume 130 (1997) no. 2, pp. 371-398 | DOI | MR | Zbl
[11] Specialisation of Heegner points and applications, Universitat Politècnica de Catalunya (2010) (Ph. D. Thesis)
[12] Mauvaise réduction des courbes de Shimura, Séminaire de théorie des nombres, Paris 1983–84 (Progr. Math.), Volume 59, Birkhäuser Boston, Boston, MA, 1985, pp. 199-217 | MR | Zbl
[13] Towards the triviality of for , Compos. Math., Volume 141 (2005) no. 3, pp. 561-572 | DOI | MR | Zbl
[14] Proving the triviality of rational points on Atkin-Lehner quotients of Shimura curves, Math. Ann., Volume 339 (2007) no. 4, pp. 915-935 | DOI | MR | Zbl
[15] On modular representations of arising from modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 431-476 | DOI | MR | Zbl
[16] Which quaternion algebras act on a modular abelian variety ?, Math. Res. Lett., Volume 15 (2008) no. 2, pp. 251-263 | DOI | MR | Zbl
[17] Failure of the Hasse principle for Atkin-Lehner quotients of Shimura curves over , Mosc. Math. J., Volume 5 (2005) no. 2, p. 463-476, 495 | MR | Zbl
[18] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971 (Kanô Memorial Lectures, No. 1) | MR | Zbl
[19] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1992 (Corrected reprint of the 1986 original) | MR | Zbl
[20] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994 | DOI | MR | Zbl
[21] Galois representations over fields of moduli and rational points on Shimura curves (preprint available at : http ://www-ma2.upc.edu/vrotger/docs/students/dV-R.pdf)
[22] Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, 1980 | MR | Zbl
Cité par Sources :