On étudie la “symétrie de Fourier” des mesures et des distributions sur le cercle en rapport avec la dimension de leurs supports. Les résultats essentiels du présent travail sont les suivants :
(i) L’extension unilatérale du théorème de Frostman qui met en rapport la vitesse de décroissance de la transformation de Fourier d’une distribution et la dimension de Hausdorf de son support.
(ii) La construction des compacts d’une taille “critique” qui peut supporter des distributions (voire des pseudo-fonctions) avec une partie anti-analytique appartenant à .
On donne également quelques exemples de l’asymétrie qui peut se produire pour des mesures à “petit” support. Plusieurs questions ouvertes sont formulées.
We study the “Fourier symmetry” of measures and distributions on the circle, in relation with the size of their supports. The main results of this paper are:
(i) A one-side extension of Frostman’s theorem, which connects the rate of decay of Fourier transform of a distribution with the Hausdorff dimension of its support;
(ii) A construction of compacts of “critical” size, which support distributions (even pseudo-functions) with anti-analytic part belonging to .
We also give examples of non-symmetry which may occur for measures with “small” support. A number of open questions are stated.
Keywords: Hausorff dimension, Frostman’s theorem, Fourier symmetry
Mot clés : Dimension de Hausdorff, Théorème de Frostman, Symétrie de Fourier.
@article{AIF_2013__63_4_1205_0, author = {Kozma, Gady and Olevski\u{i}, Alexander}, title = {Singular distributions, dimension of support, and symmetry of {Fourier} transform}, journal = {Annales de l'Institut Fourier}, pages = {1205--1226}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {4}, year = {2013}, doi = {10.5802/aif.2801}, zbl = {06359587}, mrnumber = {3137353}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2801/} }
TY - JOUR AU - Kozma, Gady AU - Olevskiĭ, Alexander TI - Singular distributions, dimension of support, and symmetry of Fourier transform JO - Annales de l'Institut Fourier PY - 2013 SP - 1205 EP - 1226 VL - 63 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2801/ DO - 10.5802/aif.2801 LA - en ID - AIF_2013__63_4_1205_0 ER -
%0 Journal Article %A Kozma, Gady %A Olevskiĭ, Alexander %T Singular distributions, dimension of support, and symmetry of Fourier transform %J Annales de l'Institut Fourier %D 2013 %P 1205-1226 %V 63 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2801/ %R 10.5802/aif.2801 %G en %F AIF_2013__63_4_1205_0
Kozma, Gady; Olevskiĭ, Alexander. Singular distributions, dimension of support, and symmetry of Fourier transform. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1205-1226. doi : 10.5802/aif.2801. http://www.numdam.org/articles/10.5802/aif.2801/
[1] Boundary limits and an asymptotic Phragmén-Lindelöf theorem for analytic functions of slow growth, Indiana University Mathematics Journal, Volume 41/2 (1992), pp. 465-481 | DOI | MR | Zbl
[2] Sur les spectres des fonctions ([French, on the spectrum of functions], Analyse Harmonique) (1949), pp. 9-29 | MR | Zbl
[3] On the radial boundary values of subharmonic functions, Math. Scand., Volume 40 (1977), pp. 301-317 | EuDML | MR | Zbl
[4] Fractal geometry, Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003 | MR | Zbl
[5] Hankel operators of Schatten-von Neumann class and their application to stationary processes and best approximations (Appendix to the English edition of: N. K. Nikol’skiĭ, Treatise on the shift operator, Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]), Volume 273, Springer-Verlag, Berlin, 1986, pp. 399-454 | MR
[6] Some random series of functions, Cambridge Studies in Advanced Mathematics 5, Cambridge University Press, Cambridge, 1985 | MR | Zbl
[7] Ensembles parfaits et séries trigonométriques, [French, Perfect sets and trigonometric series], Second ed., With notes by Kahane, Thomas W. Körner, Russell Lyons and Stephen William Drury. Hermann, Paris, 1994 | MR | Zbl
[8] An introduction to harmonic analysis, Dover Publications, Inc., New York, 1976 | MR | Zbl
[9] On the theorem of Jarník and Besicovitch, Acta Arith., Volume 39:3 (1981), pp. 265-267 | EuDML | MR | Zbl
[10] Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, 128, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[11] A null series with small anti-analytic part, Comptes Rendus de l’Académie des Sciences Paris, Série I Mathématique, Volume 336:6 (2003), pp. 475-478 | DOI | MR | Zbl
[12] Analytic representation of functions and a new quasi-analyticity threshold, Annals of Math., Volume 164:3 (2006), pp. 1033-1064 | DOI | MR | Zbl
[13] Is PLA large?, Bull. Lond. Math. Soc., Volume 39:2 (2007), pp. 173-180 | DOI | MR | Zbl
[14] The two sides of a Fourier-Stieltjes transform and almost idempotent measures, Israel J. Math., Volume 8 (1970), pp. 213-229 | DOI | MR | Zbl
[15] Wiener’s ‘closure of translates’ problem and Piatetski-Shapiro’s uniqueness phenomenon (To appear in Ann. Math. http://arxiv.org/abs/0908.0447) | MR | Zbl
[16] Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[17] Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal., Volume 10:6 (2000), pp. 1579-1587 | DOI | MR | Zbl
[18] Дополнение к работе “К проблеме единственности разложения функции в тригонометрический ряд”, Moskov. Gos. Univ. Uč. Zap. Mat., Volume 165 (1954), pp. 79-97 ([Russian, Supplement to the work “On the problem of uniqueness of expansion of a function in a trigonometric series”] English translation in Selected Works of Ilya Piatetski-Shapiro, AMS Collected Works, vol. 15, 2000)
[19] Une classe de séries trigonométriques qui convergent presque partout vers zéro, [French, A class of trigonometric series converging almost everywhere to zero] Math. Ann., Volume 101:1 (1929), pp. 686-700 | MR
[20] Dimensions in a separable metric space, Kyushu J. Math., Volume 49:1 (1995), pp. 143-162 | DOI | MR | Zbl
[21] Trigonometric series. Vol. I, II, With a foreword by Robert A. Fefferman. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002 | MR | Zbl
Cité par Sources :