Soit un anneau de valuation discrète de caractéristique mixte , de corps résiduel . Utilisant un travail de Sekiguchi et Suwa, nous construisons des modèles finis plats sur du schéma en groupes des racines -ièmes de l’unité, que nous appelons schémas en groupes de Kummer. Nous développons soigneusement le cadre général et les propriétés algébriques de cette construction. Lorsque est parfait et est une extension complète totalement ramifiée de l’anneau des vecteurs de Witt , nous étudions en parallèle les modules de Breuil-Kisin des modèles finis plats de , de telle manière que les constructions des groupes de Kummer et des modules de Breuil-Kisin peuvent être comparées. Nous calculons ces objets pour . Cela nous mène à conjecturer que tous les modèles finis plats de sont des schémas en groupes de Kummer.
Let be a discrete valuation ring of mixed characteristics , with residue field . Using work of Sekiguchi and Suwa, we construct some finite flat -models of the group scheme of -th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When is perfect and is a complete totally ramified extension of the ring of Witt vectors , we provide a parallel study of the Breuil-Kisin modules of finite flat models of , in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for . This leads us to conjecture that all finite flat models of are Kummer group schemes.
Keywords: group schemes, roots of unity, Breuil-Kisin module
Mot clés : schéma en groupes, racines de l’unité, module de Breuil-Kisin
@article{AIF_2013__63_3_1055_0, author = {M\'ezard, A. and Romagny, M. and Tossici, D.}, title = {Models of group schemes of roots of unity}, journal = {Annales de l'Institut Fourier}, pages = {1055--1135}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {3}, year = {2013}, doi = {10.5802/aif.2784}, zbl = {1297.14051}, mrnumber = {3137480}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2784/} }
TY - JOUR AU - Mézard, A. AU - Romagny, M. AU - Tossici, D. TI - Models of group schemes of roots of unity JO - Annales de l'Institut Fourier PY - 2013 SP - 1055 EP - 1135 VL - 63 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2784/ DO - 10.5802/aif.2784 LA - en ID - AIF_2013__63_3_1055_0 ER -
%0 Journal Article %A Mézard, A. %A Romagny, M. %A Tossici, D. %T Models of group schemes of roots of unity %J Annales de l'Institut Fourier %D 2013 %P 1055-1135 %V 63 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2784/ %R 10.5802/aif.2784 %G en %F AIF_2013__63_3_1055_0
Mézard, A.; Romagny, M.; Tossici, D. Models of group schemes of roots of unity. Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 1055-1135. doi : 10.5802/aif.2784. http://www.numdam.org/articles/10.5802/aif.2784/
[1] Ramification of local fields with imperfect residue fields I, Amer. J. Math., Volume 124 (2002), pp. 879-920 | DOI | MR | Zbl
[2] Moduli of Galois covers in mixed characteristics (to appear in Algebra and Number Theory)
[3] Schémas en groupes et corps des normes (unpublished manuscript, September 1998)
[4] Integral -adic Hodge Theory, Algebraic geometry 2000, Azumino (Hotaka) (Adv. Stud. Pure Math.), Volume 36, Math. Soc. Japan, 2002, pp. 51-80 | MR | Zbl
[5] Cleft extensions of Hopf algebras, Proc. London Math. Soc., Volume 67 (1993), pp. 227-307 | MR | Zbl
[6] Estimation des dimensions de certaines variétés de Kisin (preprint, arXiv:1005.2394)
[7] Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Mathematical Surveys and Monographs, 80, American Mathematical Society, 2000 | MR | Zbl
[8] Cyclic Hopf orders defined by isogenies of formal groups, Amer. J. of Math., Volume 125 (2003), pp. 1295-1334 | DOI | MR | Zbl
[9] Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., 150, Springer-Verlag, 1995 | MR | Zbl
[10] La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | DOI | MR | Zbl
[11] Représentations -adiques des corps locaux I, The Grothendieck Festschrift, Vol. II (Progr. Math.), Volume 87, Birkhäuser, 1990, pp. 249-309 | MR | Zbl
[12] Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z., Volume 210 (1992), pp. 37-67 | DOI | MR | Zbl
[13] -Elementary group schemes-constructions and Raynaud’s Theory, Hopf algebra, Polynomial formal Groups and Raynaud Orders, Volume 136, Mem. Amer. Soc., 1998, pp. 91-118 | Zbl
[14] On the connected components of moduli spaces of finite flat models (to appear in Amer. J. Math) | Zbl
[15] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton University Press, 1985 | MR | Zbl
[16] Crystalline representations and -crystals, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 459-496 | MR | Zbl
[17] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[18] Hopf algebra orders determined by group valuations, J. Algebra, Volume 38 (1976) no. 2, pp. 414-452 | DOI | MR | Zbl
[19] A relation between Dieudonné displays and crystalline Dieudonné theory (preprint, arXiv:1006.2720)
[20] The correspondence between Barsotti-Tate groups and Kisin modules when preprint, (2011)
[21] Cubic forms. Algebra, geometry, arithmetic, North-Holland, 1986 | MR | Zbl
[22] Sekiguchi-Suwa Theory revisited preprint, (2011)
[23] Effective models of group schemes (to appear in the Journal of Algebraic Geometry)
[24] On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4), Volume 22 (1989) no. 3, pp. 345-375 | Numdam | MR | Zbl
[25] On the unified Kummer-Artin-Schreier-Witt Theory no. 111 in the preprint series of the Laboratoire de Mathématiques Pures de Bordeaux (1999)
[26] A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree , Tohoku Math. J. (2), Volume 53 (2001) no. 2, pp. 203-240 | DOI | MR | Zbl
[27] Corps Locaux, Hermann, 1980 | MR
[28] An introduction to quasigroups and their representations, Studies in Advanced Mathematics, Chapman & Hall, 2007 | MR | Zbl
[29] Group schemes of prime order, Ann. Sci. Ec. Norm. Sup., Volume 3 (1970), pp. 1-21 | Numdam | MR | Zbl
[30] Effective models and extension of torsors over a discrete valuation ring of unequal characteristic, Int. Math. Res. Not. IMRN, 2008 (Art. ID rnn111, 68 pp) | MR | Zbl
[31] Models of over a discrete valuation ring. With an appendix by Xavier Caruso, J. Algebra, Volume 323 (2010) no. 7, pp. 1908-1957 | DOI | MR | Zbl
[32] -Hopf algebra orders in , J. Alg., Volume 169 (1994), pp. 418-440 | DOI | MR | Zbl
[33] One-dimensional affine group schemes, J. Algebra, Volume 66 (1980) no. 2, pp. 550-568 | DOI | MR | Zbl
Cité par Sources :