Nous considérons les déformations de complexes bornés de
We consider deformations of bounded complexes of modules for a profinite group
Keywords: Versal and universal deformations, derived categories, finiteness questions, tame fundamental groups
Mot clés : déformations verselles et universelles, catégories dérivées, questions de finitude, groupes fondamentaux modérés
@article{AIF_2013__63_2_573_0, author = {Bleher, Frauke M. and Chinburg, Ted}, title = {Finiteness {Theorems} for {Deformations} of {Complexes}}, journal = {Annales de l'Institut Fourier}, pages = {573--612}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2770}, zbl = {06193041}, mrnumber = {3112842}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2770/} }
TY - JOUR AU - Bleher, Frauke M. AU - Chinburg, Ted TI - Finiteness Theorems for Deformations of Complexes JO - Annales de l'Institut Fourier PY - 2013 SP - 573 EP - 612 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2770/ DO - 10.5802/aif.2770 LA - en ID - AIF_2013__63_2_573_0 ER -
%0 Journal Article %A Bleher, Frauke M. %A Chinburg, Ted %T Finiteness Theorems for Deformations of Complexes %J Annales de l'Institut Fourier %D 2013 %P 573-612 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2770/ %R 10.5802/aif.2770 %G en %F AIF_2013__63_2_573_0
Bleher, Frauke M.; Chinburg, Ted. Finiteness Theorems for Deformations of Complexes. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 573-612. doi : 10.5802/aif.2770. https://www.numdam.org/articles/10.5802/aif.2770/
[1] Deformations and derived categories, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 97-100 | DOI | MR | Zbl
[2] Deformations and derived categories, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 7, pp. 2285-2359 | DOI | Numdam | MR | Zbl
[3] Obstructions for deformations of complexes, Ann. Inst. Fourier (Grenoble), Volume 63 (2013) no. 2, pp. 613-654 | DOI
[4] Pseudocompact algebras, profinite groups and class formations, J. Algebra, Volume 4 (1966), pp. 442-470 | DOI | MR | Zbl
[5] Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-348 | Numdam | MR | Zbl
[6] Étude infinitesimale des schémas en groupes, A. Grothendieck, SGA 3 (with M. Demazure), Schémas en groupes I, II, III (Lecture Notes in Mathematics, Vol. 151), Springer-Verlag, Heidelberg, 1970, pp. 476-562 | Zbl
[7] The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin, 1971 | MR | Zbl
[8] Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[9] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[10] Groupes analytiques
[11] Deforming Galois representations, Galois groups over
[12] An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 243-311 | MR | Zbl
[13] Functors of Artin rings, Trans. Amer. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl
[14] Tame coverings of arithmetic schemes, Math. Ann., Volume 322 (2002) no. 1, pp. 1-18 | DOI | MR | Zbl
[15] Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 313-326 | MR | Zbl
[16] Catégories derivées, P. Deligne, SGA 4.5, Cohomologie étale (Lecture Notes in Mathematics, Vol. 569), Springer-Verlag, Heidelberg, 1970, pp. 262-311
Cité par Sources :