Nous considérons les déformations de complexes bornés de -modules, sur un corps de caractéristique positive lorsque est un groupe profini. Nous démontrons un théorème de finitude qui fournit des conditions suffisantes pour que la déformation verselle d’un tel complexe puisse être représentée par un complexe de -modules strictement parfait sur l’anneau de déformation verselle associé.
We consider deformations of bounded complexes of modules for a profinite group over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of -modules that is strictly perfect over the associated versal deformation ring.
Keywords: Versal and universal deformations, derived categories, finiteness questions, tame fundamental groups
Mot clés : déformations verselles et universelles, catégories dérivées, questions de finitude, groupes fondamentaux modérés
@article{AIF_2013__63_2_573_0, author = {Bleher, Frauke M. and Chinburg, Ted}, title = {Finiteness {Theorems} for {Deformations} of {Complexes}}, journal = {Annales de l'Institut Fourier}, pages = {573--612}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2770}, zbl = {06193041}, mrnumber = {3112842}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2770/} }
TY - JOUR AU - Bleher, Frauke M. AU - Chinburg, Ted TI - Finiteness Theorems for Deformations of Complexes JO - Annales de l'Institut Fourier PY - 2013 SP - 573 EP - 612 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2770/ DO - 10.5802/aif.2770 LA - en ID - AIF_2013__63_2_573_0 ER -
%0 Journal Article %A Bleher, Frauke M. %A Chinburg, Ted %T Finiteness Theorems for Deformations of Complexes %J Annales de l'Institut Fourier %D 2013 %P 573-612 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2770/ %R 10.5802/aif.2770 %G en %F AIF_2013__63_2_573_0
Bleher, Frauke M.; Chinburg, Ted. Finiteness Theorems for Deformations of Complexes. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 573-612. doi : 10.5802/aif.2770. http://www.numdam.org/articles/10.5802/aif.2770/
[1] Deformations and derived categories, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 97-100 | DOI | MR | Zbl
[2] Deformations and derived categories, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 7, pp. 2285-2359 | DOI | Numdam | MR | Zbl
[3] Obstructions for deformations of complexes, Ann. Inst. Fourier (Grenoble), Volume 63 (2013) no. 2, pp. 613-654 | DOI
[4] Pseudocompact algebras, profinite groups and class formations, J. Algebra, Volume 4 (1966), pp. 442-470 | DOI | MR | Zbl
[5] Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-348 | Numdam | MR | Zbl
[6] Étude infinitesimale des schémas en groupes, A. Grothendieck, SGA 3 (with M. Demazure), Schémas en groupes I, II, III (Lecture Notes in Mathematics, Vol. 151), Springer-Verlag, Heidelberg, 1970, pp. 476-562 | Zbl
[7] The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin, 1971 | MR | Zbl
[8] Algebraic geometry, Springer-Verlag, New York, 1977 (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[9] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[10] Groupes analytiques -adiques, Inst. Hautes Études Sci. Publ. Math. (1965) no. 26, pp. 389-603 | Numdam | MR | Zbl
[11] Deforming Galois representations, Galois groups over (Berkeley, CA, 1987) (Math. Sci. Res. Inst. Publ.), Volume 16, Springer, New York, 1989, pp. 385-437 | MR | Zbl
[12] An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 243-311 | MR | Zbl
[13] Functors of Artin rings, Trans. Amer. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl
[14] Tame coverings of arithmetic schemes, Math. Ann., Volume 322 (2002) no. 1, pp. 1-18 | DOI | MR | Zbl
[15] Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 313-326 | MR | Zbl
[16] Catégories derivées, P. Deligne, SGA 4.5, Cohomologie étale (Lecture Notes in Mathematics, Vol. 569), Springer-Verlag, Heidelberg, 1970, pp. 262-311
Cité par Sources :