On introduit une généralisation de l’opérateur d’Aleksandrov, afin de représenter l’adjoint d’un opérateur de composition à poids sur par une intégrale selon une mesure. En particulier, nous montrons l’existence d’une famille de mesures qui représentent l’adjoint d’un opérateur de composition à poids, sous des hypothèses assez faibles. On discute l’unicité, et aussi la généralisation des mesures d’Aleksandrov–Clark, qui correspond au cas sans poids, c’est-à-dire au cas de l’adjoint des opérateurs de composition.
A generalization of the Aleksandrov operator is provided, in order to represent the adjoint of a weighted composition operator on by means of an integral with respect to a measure. In particular, we show the existence of a family of measures which represents the adjoint of a weighted composition operator under fairly mild assumptions, and we discuss not only uniqueness but also the generalization of Aleksandrov–Clark measures which corresponds to the unweighted case, that is, to the adjoint of composition operators.
Keywords: Aleksandrov operator, Aleksandrov–Clark measures, Weighted composition operators
Mot clés : Opérateur d’Aleksandrov, Mesures d’Aleksandrov–Clark, Opérateur de composition à poids
@article{AIF_2013__63_2_373_0, author = {Gallardo-Guti\'errez, Eva A. and Partington, Jonathan R.}, title = {A generalization of the {Aleksandrov} operator and adjoints of weighted composition operators}, journal = {Annales de l'Institut Fourier}, pages = {373--389}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2763}, zbl = {1282.47032}, mrnumber = {3112515}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2763/} }
TY - JOUR AU - Gallardo-Gutiérrez, Eva A. AU - Partington, Jonathan R. TI - A generalization of the Aleksandrov operator and adjoints of weighted composition operators JO - Annales de l'Institut Fourier PY - 2013 SP - 373 EP - 389 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2763/ DO - 10.5802/aif.2763 LA - en ID - AIF_2013__63_2_373_0 ER -
%0 Journal Article %A Gallardo-Gutiérrez, Eva A. %A Partington, Jonathan R. %T A generalization of the Aleksandrov operator and adjoints of weighted composition operators %J Annales de l'Institut Fourier %D 2013 %P 373-389 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2763/ %R 10.5802/aif.2763 %G en %F AIF_2013__63_2_373_0
Gallardo-Gutiérrez, Eva A.; Partington, Jonathan R. A generalization of the Aleksandrov operator and adjoints of weighted composition operators. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 373-389. doi : 10.5802/aif.2763. http://www.numdam.org/articles/10.5802/aif.2763/
[1] Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat., Volume 22 (1987) no. 5, pp. 490-503 | MR | Zbl
[2] Cauchy transforms and composition operators, Illinois J. Math., Volume 42 (1998) no. 1, pp. 58-69 http://projecteuclid.org/getRecord?id=euclid.ijm/1255985613 | MR | Zbl
[3] The Cauchy transform, Mathematical Surveys and Monographs, 125, American Mathematical Society, Providence, RI, 2006 | MR | Zbl
[4] Linear fractional composition operators on , Integral Equations Operator Theory, Volume 11 (1988) no. 2, pp. 151-160 | DOI | MR | Zbl
[5] Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois J. Math., Volume 51 (2007) no. 2, p. 479-498 (electronic) http://projecteuclid.org/getRecord?id=euclid.ijm/1258138425 | MR | Zbl
[6] Compactness criteria for integral operators in and spaces, Proc. Amer. Math. Soc., Volume 123 (1995) no. 12, pp. 3709-3716 | DOI | MR | Zbl
[7] On the connected component of compact composition operators on the Hardy space, Adv. Math., Volume 219 (2008) no. 3, pp. 986-1001 | DOI | MR | Zbl
[8] Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, New York, 2007 | MR | Zbl
[9] On Inequalities in the Theory of Functions, Proc. London Math. Soc., Volume S2-23 (1925) no. 1, pp. 481-519 | DOI | MR
[10] Applications of spectral measures, Recent advances in operator-related function theory (Contemp. Math.), Volume 393, Amer. Math. Soc., Providence, RI, 2006, pp. 15-27 | DOI | MR | Zbl
[11] Remarques sur le lemme de Schwarz, Comptes Rendus Acad. Sci. Paris, Volume 188 (1929), pp. 1027-1029
[12] Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc, Trans. Amer. Math. Soc., Volume 356 (2004) no. 8, p. 3167-3187 (electronic) | DOI | MR | Zbl
[13] On compactness of the difference of composition operators, J. Math. Anal. Appl., Volume 298 (2004) no. 2, pp. 501-522 | DOI | MR | Zbl
[14] Aleksandrov-Clark measures, Recent advances in operator-related function theory (Contemp. Math.), Volume 393, Amer. Math. Soc., Providence, RI, 2006, pp. 1-14 | DOI | MR | Zbl
[15] An elementary introduction to Clark measures, Topics in complex analysis and operator theory, Univ. Málaga, Málaga, 2007, pp. 85-136 | MR | Zbl
[16] Composition operators as integral operators, Analysis and partial differential equations (Lecture Notes in Pure and Appl. Math.), Volume 122, Dekker, New York, 1990, pp. 545-565 | MR | Zbl
[17] Compact composition operators on , Proc. Amer. Math. Soc., Volume 108 (1990) no. 2, pp. 443-449 | DOI | MR | Zbl
Cité par Sources :