Overconvergent modular forms
[Formes modulaires surconvergentes]
Annales de l'Institut Fourier, Tome 63 (2013) no. 1, pp. 219-239.

Nous donnons une définition géométrique des formes surconvergentes de poids p-adique quelconque. Ceci nous permet d’obtenir la théorie des familles p-adiques de formes modulaires de Coleman et de reconstruire la courbe de Hecke de Coleman et Mazur sans utiliser la famille d’Eisenstein.

We give a geometric definition of overconvergent modular forms of any p-adic weight. As an application, we reprove Coleman’s theory of p-adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.

DOI : 10.5802/aif.2759
Classification : 11F33
Keywords: formes modulaires $p$-adiques, formes modulaires suronvergentes, courbes modulaires
Mot clés : $p$-adic modular forms, overconvergent modular forms, modular curves
Pilloni, Vincent 1

1 Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46, allée d’Italie 69364 Lyon Cedex 07 (France)
@article{AIF_2013__63_1_219_0,
     author = {Pilloni, Vincent},
     title = {Overconvergent modular forms},
     journal = {Annales de l'Institut Fourier},
     pages = {219--239},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {1},
     year = {2013},
     doi = {10.5802/aif.2759},
     zbl = {06177080},
     mrnumber = {3097946},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2759/}
}
TY  - JOUR
AU  - Pilloni, Vincent
TI  - Overconvergent modular forms
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 219
EP  - 239
VL  - 63
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2759/
DO  - 10.5802/aif.2759
LA  - en
ID  - AIF_2013__63_1_219_0
ER  - 
%0 Journal Article
%A Pilloni, Vincent
%T Overconvergent modular forms
%J Annales de l'Institut Fourier
%D 2013
%P 219-239
%V 63
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2759/
%R 10.5802/aif.2759
%G en
%F AIF_2013__63_1_219_0
Pilloni, Vincent. Overconvergent modular forms. Annales de l'Institut Fourier, Tome 63 (2013) no. 1, pp. 219-239. doi : 10.5802/aif.2759. http://www.numdam.org/articles/10.5802/aif.2759/

[1] Andreatta, F.; Iovita, A.; Stevens, G. Geometric overconvergent modular forms (prépublication)

[2] Berthelot, P. Cohomologie rigide et cohomologie rigide à support propre, 1996 (Première partie, prépublication 96–03, disponible sur perso.univ-rennes1.fr/pierre.berthelot/)

[3] Buzzard, Kevin Eigenvarieties, L -functions and Galois representations (London Math. Soc. Lecture Note Ser.), Volume 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59-120 | DOI | MR | Zbl

[4] Buzzard, Kevin; Taylor, Richard Companion forms and weight one forms, Ann. of Math. (2), Volume 149 (1999) no. 3, pp. 905-919 | DOI | MR | Zbl

[5] Coleman, Robert F. p-adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl

[6] Coleman, Robert F.; Mazur, B. The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996) (London Math. Soc. Lecture Note Ser.), Volume 254, Cambridge Univ. Press, Cambridge, 1998, pp. 1-113 | DOI | MR | Zbl

[7] Fargues, Laurent Application de Hodge-Tate duale d’un groupe de Lubin-Tate, immeuble de Bruhat-Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Volume 140 (2007) no. 3, pp. 499-590 | DOI | MR | Zbl

[8] Fargues, Laurent La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | DOI | MR | Zbl

[9] Hida, Haruzo Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 2, pp. 231-273 | Numdam | MR | Zbl

[10] Hida, Haruzo p-adic automorphic forms on reductive groups, Astérisque (2005) no. 298, pp. 147-254 (Automorphic forms. I) | Numdam | MR | Zbl

[11] Katz, Nicholas M. p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 69-190. Lecture Notes in Mathematics, Vol. 350 | MR | Zbl

[12] Mazur, B.; Messing, William Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin, 1974 | MR | Zbl

[13] Tate, John; Oort, Frans Group schemes of prime order, Ann. Sci. École Norm. Sup. (4), Volume 3 (1970), pp. 1-21 | EuDML | Numdam | MR | Zbl

Cité par Sources :