Nous étudions l’ensemble Conf des immersions conformes entre deux variétés pseudo-riemanniennes et . Nous caractérisons notamment l’adhérence de Conf dans l’espace des applications continues , et décrivons quelques propriétés géométriques de lorsque cette adhérence est non triviale.
We study the set Conf of conformal immersions between two pseudo-Riemannian manifolds and . We characterize the closure of Conf in the space of continuous maps from to , and we investigate the geometric properties of whenever this closure is nontrivial.
Mot clés : transformations conformes, structures pseudo-riemanniennes.
Keywords: conformal maps, pseudo-Riemannian structures.
@article{AIF_2012__62_5_1627_0, author = {Frances, Charles}, title = {D\'eg\'enerescence locale des transformations conformes pseudo-riemanniennes}, journal = {Annales de l'Institut Fourier}, pages = {1627--1669}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {5}, year = {2012}, doi = {10.5802/aif.2732}, zbl = {1261.53052}, mrnumber = {3025150}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2732/} }
TY - JOUR AU - Frances, Charles TI - Dégénerescence locale des transformations conformes pseudo-riemanniennes JO - Annales de l'Institut Fourier PY - 2012 SP - 1627 EP - 1669 VL - 62 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2732/ DO - 10.5802/aif.2732 LA - fr ID - AIF_2012__62_5_1627_0 ER -
%0 Journal Article %A Frances, Charles %T Dégénerescence locale des transformations conformes pseudo-riemanniennes %J Annales de l'Institut Fourier %D 2012 %P 1627-1669 %V 62 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2732/ %R 10.5802/aif.2732 %G fr %F AIF_2012__62_5_1627_0
Frances, Charles. Dégénerescence locale des transformations conformes pseudo-riemanniennes. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1627-1669. doi : 10.5802/aif.2732. http://www.numdam.org/articles/10.5802/aif.2732/
[1] Self-similar Lorentzian manifolds, Ann. Global Anal. Geom., Volume 3 (1985) no. 1, pp. 59-84 | DOI | MR | Zbl
[2] A primer on the (2+1) Einstein universe., Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, 2008 | MR | Zbl
[3] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | Zbl
[4] On distinguished curves in parabolic geometries, Transform. Groups, Volume 9 (2004) no. 2, pp. 143-166 | DOI | MR | Zbl
[5] Les géodésiques des structures conformes, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 18, pp. 629-632 | MR | Zbl
[6] Convergence and degeneracy of quasiconformal maps of Riemannian manifolds, J. Anal. Math., Volume 69 (1996), pp. 1-24 | DOI | MR | Zbl
[7] The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | DOI | MR | Zbl
[8] Géométrie et dynamique lorentziennes conformes (Thèse, ENS Lyon, 2002, available at http ://mahery.math.u-psud.fr/frances/)
[9] Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 5, pp. 741-764 (English version : eprint arXiv :math/0608.537v1) | Numdam | MR | Zbl
[10] The Carathéodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No., Volume 336/11 (1963), pp. 21 | MR | Zbl
[11] Transformation groups in differential geometry. Reprint of the 1972 edition., Classics in Mathematics, Springer-Verlag, Berlin, 1995 | MR | Zbl
[12] Liouville’s theorem in conformal geometry, Pures et Appl. (9) (to appear) (Classics in Mathematics) | MR | Zbl
[13] The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971/72), pp. 247-258 | MR | Zbl
[14] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | DOI | EuDML | MR | Zbl
[15] A Mathematical Introduction to Conformal Field Theory, Springer-Verlag, Berlin, 1997 | MR | Zbl
[16] Differential Geometry : Cartan’s generalization of Klein’s Erlangen Program, Springer, New York, 1997 | MR | Zbl
[17] Lectures on -dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, Berlin-New York, 1971 | MR | Zbl
[18] Sur les actions affines des groupes discrets, Ann. Inst. Fourier, Volume 47 (1997), pp. 641-685 | DOI | EuDML | Numdam | MR | Zbl
[19] Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 775-822 | DOI | MR | Zbl
[20] Isometry groups and geodesic foliationsof Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 823-854 | DOI | MR | Zbl
Cité par Sources :